Skip to main content

Abstract

Supercritical water (SCW: T > 374.15 °C, P > 22.1 MPa) possesses specially physical and chemical properties such as high diffusivity, low viscosity, low dielectric constant, and a small amount of hydrogen bonds. Organic matter and oxygen can be dissolved in SCW with any ratio under high enough pressure condition while the solubility of inorganic salt in SCW is extremely low. Therefore, these properties are beneficial to reduce resistance of mass and heat transfer and to separate salts from SCW. As an attractive media for regulating chemical reaction process and performing salt separation process, SCW has attracted more attentions since the early 1980s. The definition of supercritical water oxidation (SCWO) is that the organic matter is oxidized into harmlessly small molecular compounds such as carbon dioxide, nitrogen, water, and inorganic salt by excess oxidant in SCW. Supercritical water gasification (SCWG) means that organic matter undergoes hydrolysis, pyrolysis reaction and so on in SCW to form a hydrogen-rich mixing gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.B.G. Jarana, J. Sánchez-Oneto, J.R. Portela, E.N. Sanz, E.J.M.D. Ossa, Supercritical water gasification of industrial organic wastes. J Supercrit Fluid, 2008, 46: 329–334.

    Google Scholar 

  2. L.B. Kriksunov, D.D. Macdonald, Corrosion in supercritical water oxidation systems: A phenomenological analysis. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry, 1995, 142: 4069–4073.

    Google Scholar 

  3. T. Yoshida, Y. Oshima, Partial oxidative and catalytic biomass gasification in supercritical water:  A promising flow reactor system. Ind Eng Chem Res, 2004, 43: 4097–4104.

    Article  CAS  Google Scholar 

  4. A. Kruse, Hydrothermal biomass gasification. J Supercrit Fluid, 2009, 47: 391–399.

    Article  CAS  Google Scholar 

  5. S.I. Kawasaki, T. Oe, S. Itoh, A. Suzuki, K. Sue, K. Arai, Flow characteristics of aqueous salt solutions for applications in supercritical water oxidation. J Supercrit Fluid, 2007, 42: 241–254.

    Article  CAS  Google Scholar 

  6. P.A. Marrone, M. Hodes, K.A. Smith, J.W. Tester, Salt precipitation and scale control in supercritical water oxidation—Part B: Commercial/Full-scale applications. J Supercrit Fluid, 2004, 35: 289–312.

    Google Scholar 

  7. M.J. Cocero, J.L. Martínez, Cool wall reactor for supercritical water oxidation: Modelling and operation results. J Supercrit Fluid, 2004, 31: 41–55.

    Article  CAS  Google Scholar 

  8. S. Baur, H. Schmidt, A. Krämer, J. Gerber, The destruction of industrial aqueous waste containing biocides in supercritical water—development of the SUWOX process for the technical application. J Supercrit Fluid, 2005, 33: 149–157.

    Article  CAS  Google Scholar 

  9. P. Whiting, A.H. Mehta, Supercritical water oxidation of organics using a mobile surface. US 5543057; 1996.

    Google Scholar 

  10. Y. Calzavara, C. Joussot-Dubien, H.A. Turc, E. Fauvel, S. Sarrade, A new reactor concept for hydrothermal oxidation. J Supercrit Fluid, 2004, 31: 195–206.

    Article  CAS  Google Scholar 

  11. K.P. Príkopský, Characterization of continuous diffusion flames in supercritical water, 2007.

    Google Scholar 

  12. L.S. Cohen, J. Dan, G. Lee, D.W. Ordway, Hydrothermal oxidation of Navy excess hazardous materials. Waste Manage, 1998, 18: 539–546.

    Article  CAS  Google Scholar 

  13. C.Y. Huang, Apparatus and method for supercritical water oxidation. US 5100560; 1992.

    Google Scholar 

  14. J. Abeln, M. Kluth, G. Petrich, H. Schmieder, K. Forschungszentrum, Waste treatment by SCWO using a pipe and a transpiring wall reactor, 2005.

    Google Scholar 

  15. H.C. Lee, J.H. In, S.Y. Lee, J.H. Kim, C.H. Lee, An anti-corrosive reactor for the decomposition of halogenated hydrocarbons with supercritical water oxidation. J Supercrit Fluid, 2005, 36: 59–69.

    Article  CAS  Google Scholar 

  16. H.H. Mueggenburg, D.C. Rousar, M.F. Young, Supercritical water oxidation reactor with wall conduits for boundary flow control. US 5387398; 1995.

    Google Scholar 

  17. E. Fauvel, C. Joussotdubien, A. V. Tanneur, S. Moussière, P. Guichardon, A. G. Charbit, et al., A porous reactor for supercritical water oxidation:  Experimental results on salty compounds and corrosive solvents oxidation. Ind Eng Chem Res, 2005, 44: 8968–8971.

    Article  CAS  Google Scholar 

  18. B.L. Haroldsen, B.E. Mills, D.Y. Ariizumi, B.G. Brown, Transpiring wall supercritical water oxidation reactor salt deposition studies. Nuclear Fuels, 1996.

    Google Scholar 

  19. D. Su, Z. Zheng, Y. Wang, D. Tang, Supercritical water oxidation technology. Industrial Water Treatment, 2003 (in Chinese).

    Google Scholar 

  20. B. Wellig, K. Lieball, P.R.V. Rohr, Operating characteristics of a transpiring-wall SCWO reactor with a hydrothermal flame as internal heat source. J Supercrit Fluid, 2005, 34: 35–50.

    Article  CAS  Google Scholar 

  21. B. Wellig, Diss, Transpiring wall reactor for supercritical water oxidation, 2003.

    Google Scholar 

  22. R.M. Serikawa, T. Usui, T. Nishimura, H. Sato, S. Hamada, H. Sekino, Hydrothermal flames in supercritical water oxidation: Investigation in a pilot scale continuous reactor. Fuel, 2002, 81: 1147–1159.

    Article  CAS  Google Scholar 

  23. T.G. Mcguinness, Supercritical oxidation reactor. US 5558783; 1996.

    Google Scholar 

  24. P. Kritzer, N. Boukis, E. Dinjus, Factors controlling corrosion in high-temperature aqueous solutions: A contribution to the dissociation and solubility data influencing corrosion processes. Journal of Supercritical Fluids, 1999, 15: 205–227.

    Article  CAS  Google Scholar 

  25. P. Kritzer, E. Dinjus, An assessment of supercritical water oxidation (SCWO): Existing problems, possible solutions and new reactor concepts. Chem Eng J, 2001, 83: 207–214.

    Article  CAS  Google Scholar 

  26. M.D. Bermejo, D. Rincon, A. Martin, M.J. Cocero, Experimental performance and modeling of a new cooled-wall reactor for the supercritical water oxidation. Ind Eng Chem Res, 2009, 48: 6262–6272.

    Article  CAS  Google Scholar 

  27. M.J. Cocero, E. Alonso, M.T. Sanz, F. Fdz-Polanco, Supercritical water oxidation process under energetically self-sufficient operation. J Supercrit Fluid, 2002, 24: 37–46.

    Article  CAS  Google Scholar 

  28. F. Marias, F. Mancini, F. Cansell, J. Mercadier, Energy recovery in supercritical water oxydation process. Environ Eng Sci, 2008, 25: 123–130.

    Article  CAS  Google Scholar 

  29. M.D. Bermejo, M.J. Cocero, Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor. J Hazard Mater, 2006, 137: 965.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Xi'an Jiaotong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S. et al. (2020). Study on Key Technologies of Supercritical Water Gasification/Oxidation. In: Supercritical Water Processing Technologies for Environment, Energy and Nanomaterial Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-9326-6_8

Download citation

Publish with us

Policies and ethics