Skip to main content

Study on Salt Deposition and Crystallization Properties in Sub/Supercritical Water

  • Chapter
  • First Online:
Supercritical Water Processing Technologies for Environment, Energy and Nanomaterial Applications

Abstract

Above the critical point (T = 374.15 °C, P = 22.1 MPa), water exists as a single phase and has analogous transportation properties of gas and solvent properties like liquid, which is known as supercritical water (SCW) (Kutney in thermodynamic and transport property modeling in super critical water. Massachusetts Institute of Technology, 2005 [1]; Shaw et al. in Chem. Eng. News 69:26–39, 1991 [2]). SCW is a non-polar solvent that can be completely miscible with organic compounds and gases such as hydrogen, nitrogen, and oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. C. Kutney, Thermodynamic and transport property modeling in super critical water. 2005, Massachusetts Institute of Technology.

    Google Scholar 

  2. R. W. Shaw, T. B. Brill, A. A. Clifford, C. A. Eckert, E. U. Franck, Supercritical water: A medium for chemistry. Chem. Eng. News, 1991, 69: 26–39.

    Google Scholar 

  3. P. A. Marrone, Supercritical water oxidation—Current status of full-scale commercial activity for waste destruction. Journal of Supercritical Fluids, 2013, 79: 283–288.

    Article  CAS  Google Scholar 

  4. T. Tassaing, Y. Danten, M. Besnard, Infrared spectroscopic study of hydrogen-bonding in water at high temperature and pressure. Journal of Molecular Liquids, 2002, 101: 149–158.

    Article  CAS  Google Scholar 

  5. V. Vadillo, J. Sanchez-Oneto, J. Ramon Portela, E. J. Martinez de la Ossa, Problems in Supercritical Water Oxidation Process and Proposed Solutions. Industrial and Engineering Chemistry Research, 2013, 52: 7617–7629.

    Article  CAS  Google Scholar 

  6. J. Tester, H. Holgate, F. Armellini, P. Webley, W. Killilea, G. Hong, H. Barner, Emerging technologies in hazardous waste management III. In ACS Symposium Series. 1993. Am. Chem. Soc.: Washington DC.

    Google Scholar 

  7. G. Zhang, I. Hua, Supercritical water oxidation of nitrobenzene. Industrial and Engineering Chemistry Research, 2003, 42: 285–289.

    Article  CAS  Google Scholar 

  8. D. Zou, Y. Chi, J. Dong, C. Fu, M. Ni, Supercritical water oxidation of MSW leachate: Factor analysis and behavior of heavy metals. Environ. Prog. Sustain. Energy, 2013.

    Google Scholar 

  9. P. E. Savage, Heterogeneous catalysis in supercritical water. Catalysis Today, 2000, 62: 167–173.

    Article  CAS  Google Scholar 

  10. P. Kritzer, E. Dinjus, An assessment of supercritical water oxidation (SCWO): Existing problems, possible solutions and new reactor concepts. Chemical Engineering Journal, 2001, 83: 207–214.

    Article  CAS  Google Scholar 

  11. P. Kritzer, Corrosion in high-temperature and supercritical water and aqueous solutions: a review. Journal of Supercritical Fluids, 2004, 29: 1–29.

    Article  CAS  Google Scholar 

  12. P. A. Marrone, G. T. Hong, Corrosion control methods in supercritical water oxidation and gasification processes. Journal of Supercritical Fluids, 2009, 51: 83–103.

    Article  CAS  Google Scholar 

  13. K. Príkopský, B. Wellig, P. R. Von Rohr, SCWO of salt containing artificial wastewater using a transpiring-wall reactor: experimental results. J. Supercrit. Fluids, 2007, 40: 246–257.

    Article  Google Scholar 

  14. P. A. Marrone, M. Hodes, K. A. Smith, J. W. Tester, Salt precipitation and scale control in supercritical water oxidation—part B: commercial/full-scale applications. Journal of Supercritical Fluids, 2004, 29: 289–312.

    Article  CAS  Google Scholar 

  15. M. Hodes, P. A. Marrone, G. T. Hong, K. A. Smith, J. W. Tester, Salt precipitation and scale control in supercritical water oxidation—Part A: fundamentals and research. Journal of Supercritical Fluids, 2004, 29: 265–288.

    Article  CAS  Google Scholar 

  16. C. A. LaJeunesse, S. F. Rice, R. G. Hanush, J. D. Aiken, Salt deposition studies in a supercritical water oxidation reactor, in PBD: Oct 1993. 1993. p. Medium: ED; Size: 18 p.

    Google Scholar 

  17. Z. M. C. X. L. Shan, P. Q. Yuan, Precipitation of salt in near and supercritical water. J. East China Univ. Sci. Technol. (Natural Science Edition), 2007, 33: 606–609.

    Google Scholar 

  18. M. V. Fedotova, Effect of temperature and pressure on structural self-organization of aqueous sodium chloride solutions. Journal of Molecular Liquids, 2010, 153: 9–14.

    Article  CAS  Google Scholar 

  19. M. Hodes, K. A. Smith, P. Griffith, A natural convection model for the rate of salt deposition from near-supercritical, aqueous solutions. Journal of Heat Transfer-Transactions of the Asme, 2003, 125: 1027–1037.

    Article  CAS  Google Scholar 

  20. M. Schubert, J. W. Regler, F. Vogel, Continuous salt precipitation and separation from supercritical water. Part 1: Type 1 salts. Journal of Supercritical Fluids, 2010, 52: 99–112.

    Article  CAS  Google Scholar 

  21. E. Fauvel, C. Joussot-Dubien, P. Guichardon, G. Charbit, F. Charbit, S. Sarrade, A double-wall reactor for hydrothermal oxidation with supercritical water flow across the inner porous tube. Journal of Supercritical Fluids, 2004, 28: 47–56.

    Article  CAS  Google Scholar 

  22. F. J. Armellini, J. W. Teste, Experimental methods for studying salt nucleation and growth from supercritical water. Journal of Supercritical Fluids, 1991, 4: 254–264.

    Article  CAS  Google Scholar 

  23. U. Hegde, M. Hicks. Salt Precipitation and Transport in Near-Critical and Supercritical Water. In 40th International Conference on Environmental Systems. 2010.

    Google Scholar 

  24. F. J. Armellini, Phase equilibria and precipitation phenomena of sodium chloride and sodium sulfate in sub- and supercritical water. 1993, Massachusetts Institute of Technology.

    Google Scholar 

  25. V. M. Valyashko, Phase equilibria of water-salt systems at high temperatures and pressures, in Aqueous Systems at Elevated Temperatures and Pressures, D. A. Palmer, R. Fernández-Prini, and A. H. Harvey, Editors. 2004, Academic Press: London. p. 597–641.

    Chapter  Google Scholar 

  26. V. M. Valyashko, I. M. Abdulagatov, J. M. Levelt Sengers, Vapor-liquid-solid phase transitions in aqueous sodium sulfate and sodium carbonate from heat capacity measurements near the first critical end point. 2. Phase boundaries. J. Chem. Eng. Data, 2000, 45: 1139–1149.

    Article  CAS  Google Scholar 

  27. V. M. Valyashko, Phase behavior in binary and ternary water-salt systems at high temperatures and pressures. Pure and Applied Chemistry, 1997, 69: 2271–2280.

    Article  CAS  Google Scholar 

  28. M. S. Khan, S. N. Rogak, Solubility of Na2SO4, Na2CO3 and their mixture in supercritical water. Journal of Supercritical Fluids, 2004, 30: 359–373.

    Google Scholar 

  29. V. Valyashko, Phase equilibria in water-salt systems: some problems of solubility at elevated temperature and pressure. High Temperature High Pressure Electrochemistry in Aqueous Solutions, 1973, 4: 153–157.

    Google Scholar 

  30. M. S. Khan, Deposition of sodium carbonate and sodium sulfate in supercritical water oxidation systems and its mitigation. 2005.

    Google Scholar 

  31. M. Bermejo, P. Cabeza, J. Queiroz, C. Jiménez, M. Cocero, Analysis of the scale up of a transpiring wall reactor with a hydrothermal flame as a heat source for the supercritical water oxidation. J. Supercrit. Fluids, 2011, 56: 21–32.

    Article  CAS  Google Scholar 

  32. V. I. Anikeev, A. Yermakova, Technique for complete oxidation of organic compounds in supercritical water. Russian Journal of Applied Chemistry, 2011, 84: 88–94.

    Article  CAS  Google Scholar 

  33. E. Asselin, A. Alfantazi, S. Rogak, Thermodynamics of the corrosion of alloy 625 supercritical water oxidation reactor tubing in ammoniacal sulfate solution. Corrosion, 2008, 64: 301–314.

    Article  CAS  Google Scholar 

  34. D. Xu, S. Wang, X. Tang, Y. Gong, Y. Guo, Y. Wang, J. Zhang, Design of the first pilot scale plant of China for supercritical water oxidation of sewage sludge. Chemical Engineering Research & Design, 2012, 90: 288–297.

    Google Scholar 

  35. K. Karakama, S. N. Rogak, A. Alfantazi, Characterization of the deposition and transport of magnetite particles in supercritical water. Journal of Supercritical Fluids, 2012, 71: 11–18.

    Article  CAS  Google Scholar 

  36. A. A. Peterson, P. Vontobel, F. Vogel, J. W. Tester, Normal-phase dynamic imaging of supercritical-water salt precipitation using neutron radiography. Journal of Supercritical Fluids, 2009, 49: 71–78.

    Article  CAS  Google Scholar 

  37. S. V. Makaev, T. M. Bitokhov, K. G. Kravchuk, M. A. Urusova, V. M. Valyashko, Salt deposition from hydrothermal solutions in a flow reactor. Russian Journal of Physical Chemistry B, 2011, 5: 1045–1055.

    Article  CAS  Google Scholar 

  38. M. Schubert, J. W. Regler, F. Vogel, Continuous salt precipitation and separation from supercritical water. Part 2. Type 2 salts and mixtures of two salts. Journal of Supercritical Fluids, 2010, 52: 113–124.

    Article  CAS  Google Scholar 

  39. M. Schubert, J. Aubert, J. B. Müller, F. Vogel, Continuous salt precipitation and separation from supercritical water. Part 3: Interesting effects in processing type 2 salt mixtures. Journal of Supercritical Fluids, 2012, 61: 44–54.

    Article  CAS  Google Scholar 

  40. B. L. Haroldsen, B. E. Mills, D. Y. Ariizumi, B. G. Brown, Transpiring wall supercritical water oxidation reactor salt deposition studies. Nuclear Fuels, 1996.

    Google Scholar 

  41. S.-I. Kawasaki, T. Oe, S. Itoh, A. Suzuki, K. Sue, K. Arai, Flow characteristics of aqueous salt solutions for applications in supercritical water oxidation. Journal of Supercritical Fluids, 2007, 42: 241–254.

    Article  CAS  Google Scholar 

  42. F. Demoisson, M. Ariane, A. Leybros, H. Muhr, F. Bernard, Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials. Journal of Supercritical Fluids, 2011, 58: 371–377.

    Article  CAS  Google Scholar 

  43. F. Masoodiyeh, M. R. Mozdianfard, J. Karimi-Sabet, Solubility estimation of inorganic salts in supercritical water. Journal of Chemical Thermodynamics, 2014, 78: 260–268.

    Article  CAS  Google Scholar 

  44. N. Lummen, B. Kvamme, Properties of aging FeCl2 clusters grown in supercritical water investigated by molecular dynamics simulations. Journal of Chemical Physics, 2010, 132.

    Google Scholar 

  45. N. Lümmen, B. Kvamme, Kinetics of NaCl nucleation in supercritical water investigated by molecular dynamics simulations. Physical Chemistry Chemical Physics PCCP, 2007, 9: 3251–3260.

    Article  Google Scholar 

  46. M. Hovland, H. G. Rueslatten, H. K. Johnsen, B. Kvamme, T. Kuznetsova, Salt formation associated with sub-surface boiling and supercritical water. Mar. Petrol. Geol., 2006, 23: 855–869.

    Article  CAS  Google Scholar 

  47. M. Hovland, T. Kuznetsova, H. Rueslatten, B. Kvamme, H. K. Johnsen, G. E. Fladmark, A. Hebach, Sub-surface precipitation of salts in supercritical seawater. Basin Research, 2006, 18: 221–230.

    Article  Google Scholar 

  48. A. R. Hunt, Numerical simulation of hydrothermal salt separation process and analysis and cost estimating of shipboard liquid waste disposal. 2007, Massachusetts Institute of Technology.

    Google Scholar 

  49. V. Vadillo, M. Belen Garcia-Jarana, J. Sanchez-Oneto, J. R. Portela, E. J. Martinez de la Ossa, Simulation of Real Wastewater Supercritical Water Oxidation at High Concentration on a Pilot Plant Scale. Industrial and Engineering Chemistry Research, 2011, 50: 12512–12520.

    Article  CAS  Google Scholar 

  50. I. Leusbrock, S. J. Metz, G. Rexwinkel, G. F. Versteeg, The solubility of magnesium chloride and calcium chloride in near-critical and supercritical water. Journal of Supercritical Fluids, 2010, 53: 17–24.

    Article  CAS  Google Scholar 

  51. J. P. Chan, C. A. LaJeunesse, S. F. Rice, Experimental techniques to determine salt formation and deposition in supercritical water oxidation reactors. 1994, Sandia National Labs., Livermore, CA (United States).

    Google Scholar 

  52. A. Aimable, H. Muhr, C. Gentric, F. Bernard, F. Le Cras, D. Aymes, Continuous hydrothermal synthesis of inorganic nanopowders in supercritical water: Towards a better control of the process. Powder Technol., 2009, 190: 99–106.

    Article  CAS  Google Scholar 

  53. F. J. Armellini, J. W. Tester, Solubility of sodium-chloride and sulfate in subcritical and supercritical water-vapor from 450–550°C and 100–250 bar. Fluid Phase Equilibria, 1993, 84: 123–142.

    Article  CAS  Google Scholar 

  54. M. Urusova, V. Valyashko, Solubility of NaF and Li2CO3 salts of the 2nd type in supercritical water and solutions of aqueous electrolytes (NaCl, Na2WO4, and Li2SO4). Russ. J. Phys. Chem. B, 2014, 8: 919–923.

    Google Scholar 

  55. J. Rincón, R. Camarillo, A. Martín, Solubility of Aluminum Sulfate in Near-Critical and Supercritical Water. J. Chem. Eng. Data, 2012, 57: 2084–2094.

    Article  Google Scholar 

  56. M. Hodes, P. Griffith, K. A. Smith, W. S. Hurst, W. J. Bowers, K. Sako, Salt solubility and deposition in high temperature and pressure aqueous solutions. AIChE Journal, 2004, 50: 2038–2049.

    Article  CAS  Google Scholar 

  57. S. N. Rogak, P. Teshima, Deposition of sodium sulfate in a heated flow of supercritical water. AIChE Journal, 1999, 45: 240–247.

    Article  CAS  Google Scholar 

  58. L. Zhou, S. Wang, H. Ma, Y. Gong, D. Xu, Oxidation of Cu (II)-EDTA in supercritical water—Experimental results and modeling. Chemical Engineering Research and Design, 2013, 91: 286–295.

    Article  CAS  Google Scholar 

  59. A. Yoko, Y. Oshima, Recovery of silicon from silicon sludge using supercritical water. Journal of Supercritical Fluids, 2013, 75: 1–5.

    Article  CAS  Google Scholar 

  60. J. Sabet, S. Jafarinejad, A. Golzary, Supercritical water oxidation for the recovery of dysprosium ion from aqueous solutions. 2014.

    Google Scholar 

  61. D. Zou, Y. Chi, J. Dong, C. Fu, F. Wang, M. Ni, Supercritical water oxidation of tannery sludge: Stabilization of chromium and destruction of organics. Chemosphere, 2013, 93: 1413–1418.

    Article  CAS  Google Scholar 

  62. W. Zhu, Z. R. Xu, L. Li, C. He, The behavior of phosphorus in sub- and super-critical water gasification of sewage sludge. Chemical Engineering Journal, 2011, 171: 190–196.

    Article  CAS  Google Scholar 

  63. E. Fauvel, C. Joussot-Dubien, V. Tanneur, S. Moussière, P. Guichardon, G. Charbit, F. Charbit, A porous reactor for supercritical water oxidation: experimental results on salty compounds and corrosive solvents oxidation. Industrial and Engineering Chemistry Research, 2005, 44: 8968–8971.

    Article  CAS  Google Scholar 

  64. A. Kruse, D. Forchheim, M. Gloede, F. Ottinger, J. Zimmermann, Brines in supercritical biomass gasification: 1. Salt extraction by salts and the influence on glucose conversion. Journal of Supercritical Fluids, 2010, 53: 64–71.

    Article  CAS  Google Scholar 

  65. W. T. Wofford III, J. W. Griffith, R. W. Humphries, J. W. Lawrence, Apparatus and method for applying an oxidant in a hydrothermal oxidation process, in U.S. Patent. 2002.

    Google Scholar 

  66. K. Karakama, Methods for the Characterization of Deposition and Transport of Magnetite Particles in Supercritical Water. 2011, University of British Columbia.

    Google Scholar 

  67. K. A. Smith, M. Hodes, P. Griffith, On the potential for homogeneous nucleation of salt from aqueous solution in a natural convection boundary layer. Journal of Heat Transfer, 2002, 124: 930–937.

    Article  CAS  Google Scholar 

  68. J. C. W. P. Zhang, X. D. Zhang, X. W. Liu, Y. J. Xia, Research Progress in Wastewater Treatment by Supercritical Water Oxidation. J. Environmental Science, 2003, 29: 15–17.

    Google Scholar 

  69. R. N. McBrayer Jr., J. G. Swan, J. S. Barber, Method and apparatus for reacting oxidizable matter with particles. 1997, U.S. Patents.

    Google Scholar 

  70. B. Wellig, M. Weber, K. Lieball, K. Príkopský, P. Rudolf von Rohr, Hydrothermal methanol diffusion flame as internal heat source in a SCWO reactor. Journal of Supercritical Fluids, 2009, 49: 59–70.

    Article  CAS  Google Scholar 

  71. J. A. Titmas, Method and apparatus for conducting chemical reactions at supercritical conditions, in U.S. Patent. 1986.

    Google Scholar 

  72. C. S. Laspidou, D. F. Lawler, E. F. Gloyna, B. E. Rittmann, Heater effects on cyclone performance for the separation of solids from high temperature and pressure effluents. Separation Science and Technology, 1999, 34: 3059–3076.

    Article  CAS  Google Scholar 

  73. B. R. Foy, K. Waldthausen, M. A. Sedillo, S. J. Buelow, Hydrothermal Processing of Chlorinated Hydrocarbons in a Titanium Reactor. Environmental Science & Technology, 1996, 30: 2790–2799.

    Google Scholar 

  74. H. Schmidt, S. Baur, V. Casal. The SCWO-destruction of organic compounds in the presence of salt in leachates from dump sites in the SUWOX-facility. In Proc. of the GVC-Meeting: High Pressure Chemical Engineering, Forschungszentrum Karlsruhe. 1999.

    Google Scholar 

  75. M. W. Dassel, D. C. Matter, D. H. Rennie, R. N. McBrayer Jr., J. E. Deaton, F. W. Thompson, Reactor for supercritical water oxidation of waste. 1997, U.S. Patents.

    Google Scholar 

  76. J. S. Barber, Methods of controlling flow of fluids reacting at supercritical conditions. 1995, U.S. Patents, NO. 5427764.

    Google Scholar 

  77. D. A. Hazlebeck, Hydrothermal processing with phosphate additive. 2001, U.S. Patents, NO. 6238568.

    Google Scholar 

  78. M. Modell, Processing methods for the oxidation of organics in supercritical water. 1985, U.S. Patent, No. 4543190.

    Google Scholar 

  79. P. Whiting, A. H. Mehta, Supercritical water oxidation of organics using a mobile surface. 1996, U.S. Patent, No. 5543057.

    Google Scholar 

  80. M. Modell, Design of suspension flow reactors for SCWO. In Proceedings of Second International Conference on Solvothermal Reactions, Takamatsu, Japan. 1996.

    Google Scholar 

  81. M. Modell, E. F. Kuharich, M. R. Rooney, Supercritical water oxidation process and apparatus of organics with inorganics. 2001, U.S. Patent, No. 6264844.

    Google Scholar 

  82. P. C. Dell’Orco, L. Li, E. F. Gloyna, The Separation of Particulates from Supercritical Water Oxidation Processes. Separation Science, 1993, 28: 625–642.

    Article  CAS  Google Scholar 

  83. G. W. Nauflett, R. E. Farncomb, M. L. Kumar, Supercritical water oxidation reactor with a corrosion-resistant lining. 1995, U.S. Patent, No. 5461648.

    Google Scholar 

  84. S. A. Gairns, J. Joustra, Apparatus for the self-cleaning of process tubes. 1999, U.S. Patent, No. 5890531.

    Google Scholar 

  85. M. Modell, E. F. Kuharich, M. R. Rooney, Supercritical water oxidation process of organics with inorganics. 1993, U.S. Patent, No. 5252224.

    Google Scholar 

  86. J. Elliott, D. Hazlebeck, D. Ordway, A. Roberts, M. Spritzer, J. Hurley, S. Rising, Update on hydrothermal oxidation developments on DARPA/ONR and air force projects at General Atomic [C]. In Proceedings of the International Conference on Incineration and Thermal Treatment Technologies, Portland, OR. 2000.

    Google Scholar 

  87. D. A. Hazlebeck, K. W. Downey, M. H. Spritzer, Downflow hydrothermal treatment. 2000, U.S. Patent, No. 6054057.

    Google Scholar 

  88. L. D. Bond, C. C. Mills, P. Whiting, S. L. Koutz, D. A. Hazlebeck, K. W. Downey, Method and apparatus to remove inorganic scale from a supercritical water oxidation reactor. 2000, U.S. Patent, No. 6056883.

    Google Scholar 

  89. L. D. Bond, C. C. Mills, P. Whiting, S. L. Koutz, D. A. Hazlebeck, K. W. Downey, Apparatus to remove inorganic scale from a supercritical water oxidation reactor. 1996, U.S. Patent, No. 5560822.

    Google Scholar 

  90. W. R. Killilea, G. T. Hong, K. C. Swallow, T. B. Thomason, Supercritical water oxidation: microgravity solids separation. SAE Transactions, 1988: 339–350.

    Google Scholar 

  91. G. T. Hong, W. R. Killilea, T. B. Thomason, Method for solids separation in a wet oxidation type process. 1989, U.S. Patent, No. 4822497.

    Google Scholar 

  92. W. R. Killilea, G. T. Hong, K. C. Swallow, T. B. Thomason, Supercritical water oxidation: microgravity solids separation. 1988, SAE Technical Paper.

    Google Scholar 

  93. A. H. Halff, A. F. Reid, Method for separation and removal of impurities from liquids. 1994, U.S. Patent, No. 5372725.

    Google Scholar 

  94. Y. X. S. Z. Wang, Y. M. Gong, H. Zhang, D. H. Xu, Y. Guo, Desalination and slag removal device for waste supercritical water treatment, in China Patent. NO. CN101570357. 2009.

    Google Scholar 

  95. Y. M. G. S. Z. Wang, X. Y. Tang, H. H. Ma, J. Zhang, Z. Lu, Pre-desalter for supercritical water treatment of waste organic matter, in China Patent. NO. CN101987750A. 2011.

    Google Scholar 

  96. L. Z. S. Z. Wang, G. Y. Meng, D. H. Xu, X. Y. Tang, Coal-fired supercritical DC heating furnace for organic wastewater, in China Patent. NO. CN102633313A. 2012.

    Google Scholar 

  97. L. Z. S. Z. Wang, H. H. Ma, X. Y. Tang, Y. M. Gong, D. H. Xu, Hydrostatic cyclone desalination device for waste organic matter supercritical treatment, in China Patent. NO. CN102642909A. 2012.

    Google Scholar 

  98. F. Zhang, S. Chen, C. Xu, G. Chen, J. Zhang, C. Ma, Experimental study on the effects of operating parameters on the performance of a transpiring-wall supercritical water oxidation reactor. Desalination, 2012, 294: 60–66.

    Article  CAS  Google Scholar 

  99. B. Wellig, K. Lieball, P. Rudolf von Rohr, Operating characteristics of a transpiring-wall SCWO reactor with a hydrothermal flame as internal heat source. Journal of Supercritical Fluids, 2005, 34: 35–50.

    Article  CAS  Google Scholar 

  100. P. Cabeza, J. Queiroz, S. Arca, C. Jiménez, A. Gutiérrez, M. Bermejo, M. Cocero, Sludge destruction by means of a hydrothermal flame. Optimization of ammonia destruction conditions. Chemical Engineering Journal, 2013, 232: 1–9.

    Article  CAS  Google Scholar 

  101. J. P. S. Queiroz, M. D. Bermejo, F. Mato, M. J. Cocero, Supercritical water oxidation with hydrothermal flame as internal heat source: Efficient and clean energy production from waste. The Journal of Supercritical Fluids, 2015, 96: 103–113.

    Article  CAS  Google Scholar 

  102. G. Brunner, Near and supercritical water. Part II: Oxidative processes. Journal of Supercritical Fluids, 2009, 47: 382–390.

    Article  CAS  Google Scholar 

  103. D. Xu, S. Wang, C. Huang, X. Tang, Y. Guo, Transpiring wall reactor in supercritical water oxidation. Chemical Engineering Research and Design, 2014, 92: 2626–2639.

    Article  CAS  Google Scholar 

  104. P. Whiting, Reversible flow supercritical reactor and method for operating same. Journal of Cleaner Production, 1996, 5: 159.

    Google Scholar 

  105. M. Bermejo, F. Fdez-Polanco, M. Cocero, Experimental study of the operational parameters of a transpiring wall reactor for supercritical water oxidation. Journal of Supercritical Fluids, 2006, 39: 70–79.

    Article  CAS  Google Scholar 

  106. J. Abeln, M. Kluth, M. Pagel, Results and rough cost estimation for SCWO of painting effluents using a transpiring wall and a pipe reactor. J. Adv. Oxid. Technol., 2007, 10: 169–176.

    Google Scholar 

  107. M. D. Bermejo, P. Cabeza, J. P. S. Queiroz, C. Jimenez, M. J. Cocero, Analysis of the scale up of a transpiring wall reactor with a hydrothermal flame as a heat source for the supercritical water oxidation. Journal of Supercritical Fluids, 2011, 56: 21–32.

    Article  CAS  Google Scholar 

  108. Z. Chen, G. Wang, Z. A. Mirza, S. Yang, Y. Xu, Study of transpiring fluid dynamics in supercritical water oxidation using a transparent reactor. Journal of Supercritical Fluids, 2014, 88: 117–125.

    Article  CAS  Google Scholar 

  109. Z. Chen, G. Wang, F. Yin, H. Chen, Y. Xu, A new system design for supercritical water oxidation. Chemical Engineering Journal, 2015, 269: 343–351.

    Article  CAS  Google Scholar 

  110. S. Yang, G. W. Wang, Y. J. Xu, New design of supercritical water oxidation reactor for sewage sludge treatment. Advanced Materials Research, 2013, 774: 212–215.

    Article  CAS  Google Scholar 

  111. M. Cocero, J. Martınez, Cool wall reactor for supercritical water oxidation: modelling and operation results. Journal of Supercritical Fluids, 2004, 31: 41–55.

    Article  CAS  Google Scholar 

  112. J. E. Deaton, J. M. Eller, R. N. McBrayer Jr., Turbulent flow cold-wall reactor, in U.S. Patent. 1996.

    Google Scholar 

  113. S. Baur, H. Schmidt, A. Krämer, J. Gerber, The destruction of industrial aqueous waste containing biocides in supercritical water—development of the SUWOX process for the technical application. Journal of Supercritical Fluids, 2005, 33: 149–157.

    Article  CAS  Google Scholar 

  114. A. H. Halff, A. F. Reid, Method for separation and removal of impurities from liquids, in U.S. Patent. 1994.

    Google Scholar 

  115. G. T. Hong, W. R. Killilea, T. B. Thomason, Method for solids separation in a wet oxidation type process, in U.S. Patent. 1989.

    Google Scholar 

  116. H. Barner, C. Huang, T. Johnson, G. Jacobs, M. Martch, W. Killilea, Supercritical water oxidation: an emerging technology. Journal of Hazardous Materials, 1992, 31: 1–17.

    Article  CAS  Google Scholar 

  117. M. D. Bermejo, M. J. Cocero, Supercritical water oxidation: A technical review. AIChE Journal, 2006, 52: 3933–3951.

    Article  CAS  Google Scholar 

  118. M. D. Bermejo, F. Fdez-Polanco, M. J. Cocero, Effect of the transpiring wall on the behavior of a supercritical water oxidation reactor: modeling and experimental results. Industrial and Engineering Chemistry Research, 2006, 45: 3438–3446.

    Article  CAS  Google Scholar 

  119. F. Zhang, S. Chen, C. Xu, G. Chen, C. Ma, Research progress of supercritical water oxidation based on transpiring wall reactor. Chemical Industry and Engineering Progress, 2011, 8: 003.

    Google Scholar 

  120. W. J. Gong, F. Li, D. L. Xi, Supercritical water oxidation of acrylic acid production wastewater in transpiring wall reactor. Environ. Eng. Sci., 2009, 26: 131–136.

    Article  CAS  Google Scholar 

  121. G. T. Hong, V. A. Zilberstein, Iridium material for hydrothermal oxidation environments, in U.S. Patent. 1996.

    Google Scholar 

  122. M. Cocero, E. Alonso, M. Sanz, F. Fdz-Polanco, Supercritical water oxidation process under energetically self-sufficient operation. Journal of Supercritical Fluids, 2002, 24: 37–46.

    Article  CAS  Google Scholar 

  123. F. Zhang, S. Chen, C. Xu, G. Chen, C. Ma, Experimental studies on supercritical water oxidation of glucose with a transpiring wall reactor. In Power and Energy Engineering Conference (APPEEC), 2011 Asia-Pacific. 2011. IEEE.

    Google Scholar 

  124. E. L. Daman, Process and apparatus for supercritical water oxidation, in U.S. Patent. 1998.

    Google Scholar 

  125. X. H. S. Z. Wang, H. Zhang, D. H. Xu, N. Wang, Porous evaporative wall device for supercritical water treatment of waste organic matter, in China Patent. NO. CN101555059. 2009.

    Google Scholar 

  126. D. H. Xu, S. Z. Wang, Y. M. Gong, Y. Guo, X. Y. Tang, H. H. Ma, A novel concept reactor design for preventing salt deposition in supercritical water. Chemical Engineering Research and Design, 2010, 88: 1515–1522.

    Article  CAS  Google Scholar 

  127. S. Z. W. Y. Guo, D. H. Xu, Y. M. Gong, X. Y. Tang, J. Zhang, Supercritical water oxidation reactor using auxiliary fuel to recharge heat, in China Patent. NO. CN202131145U. 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Xi'an Jiaotong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S. et al. (2020). Study on Salt Deposition and Crystallization Properties in Sub/Supercritical Water. In: Supercritical Water Processing Technologies for Environment, Energy and Nanomaterial Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-9326-6_7

Download citation

Publish with us

Policies and ethics