Skip to main content

Abstract

Nanomaterials are always at the leading emerging area of material and nanotechnology. Especially in this age, the ever-increasing population in the world makes energy, chemicals and other resource efficiency particularly important in sustaining concept [1]. The significant reduction in size (1–100 nm) often improves their electronic and other properties due to quantum confinement effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. RAI, A. RAI, Nanotechnology-The secret of fifth industrial revolution and the future of next generation. JURNAL NASIONAL, 2017, 7: 61–66.

    Google Scholar 

  2. J. A. Scher, J. M. Elward, A. Chakraborty, Shape Matters: Effect of 1D, 2D, and 3D Isovolumetric Quantum Confinement in Semiconductor Nanoparticles. The Journal of Physical Chemistry C, 2016, 120: 24999–25009.

    Article  CAS  Google Scholar 

  3. E. Roduner, Size matters: why nanomaterials are different. Chem Soc Rev, 2006, 35: 583–592.

    Article  CAS  Google Scholar 

  4. J.-H. In, H.-C. Lee, M.-J. Yoon, K.-K. Lee, J.-W. Lee, C.-H. Lee, Synthesis of nano-sized YAG: Eu3 + phosphor in continuous supercritical water system. The Journal of supercritical fluids, 2007, 40: 389–396.

    Article  CAS  Google Scholar 

  5. W. Van der Weg, T. J. Popma, A. Vink, Concentration dependence of UV and electron‐excited Tb3 + luminescence in Y3Al5O12. J Appl Phys, 1985, 57: 5450–5456.

    Google Scholar 

  6. M. Jansen, H. Letschert, Inorganic yellow-red pigments without toxic metals. Nature, 2000, 404: 980.

    Article  CAS  Google Scholar 

  7. R. Ricceri, S. Ardizzone, G. Baldi, P. Matteazzi, Ceramic pigments obtained by sol-gel techniques and by mechanochemical insertion of color centers in Al2O3 host matrix. J Eur Ceram Soc, 2002, 22: 629–637.

    Article  CAS  Google Scholar 

  8. K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications. Adv Drug Del Rev, 2008, 60: 299–327.

    Article  CAS  Google Scholar 

  9. N. T. Thanh, L. A. Green, Functionalisation of nanoparticles for biomedical applications. Nano Today, 2010, 5: 213–230.

    Article  CAS  Google Scholar 

  10. S. Noimark, K. Page, J. C. Bear, C. Sotelo-Vazquez, R. Quesada-Cabrera, Y. Lu, E. Allan, J. A. Darr, I. P. Parkin, Functionalised gold and titania nanoparticles and surfaces for use as antimicrobial coatings. Faraday Discuss, 2015, 175: 273–287.

    Article  CAS  Google Scholar 

  11. S. Anandan, S. H. Yang, Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies - an overview. J Exp Nanosci, 2007, 2: 23–56.

    Article  CAS  Google Scholar 

  12. K. Huang, M. Lei, Y. J. Wang, C. Liang, C. X. Ye, X. S. Zhao, Y. F. Li, R. Zhang, D. Y. Fan, Y. G. Wang, Green hydrothermal synthesis of Ce0(2) NWs-reduced graphene oxide hybrid with enhanced photocatalytic activity. Powder Diffr, 2014, 29: 8–13.

    Article  CAS  Google Scholar 

  13. T. Adschiri, Y. W. Lee, M. Goto, S. Takami, Green materials synthesis with supercritical water. Green Chemistry, 2011, 13: 1380–1390.

    Article  CAS  Google Scholar 

  14. C. Aymonier, A. Loppinet-Serani, H. Reveron, Y. Garrabos, F. Cansell, Review of supercritical fluids in inorganic materials science. J Supercrit Fluids, 2006, 38: 242–251.

    Article  CAS  Google Scholar 

  15. J. A. Darr, J. Zhang, N. M. Makwana, X. Weng, Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions. Chem Rev, 2017.

    Google Scholar 

  16. J. A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem Rev, 1999, 99: 495–542.

    Article  CAS  Google Scholar 

  17. T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind Eng Chem Res, 2000, 39: 4901–4907.

    Article  CAS  Google Scholar 

  18. H. Vehkamäki, Classical nucleation theory in multicomponent systems. 2006: Springer Science & Business Media.

    Google Scholar 

  19. D. Kashchiev, On the relation between nucleation work, nucleus size, and nucleation rate. The Journal of Chemical Physics, 1982, 76: 5098–5102.

    Article  CAS  Google Scholar 

  20. T. Adschiri, K. Kanazawa, K. Arai, Rapid and Continuous Hydrothermal Crystallization of Metal-oxide Particles in Supercritical Water. J Am Ceram Soc, 1992, 75: 1019–1022.

    Article  CAS  Google Scholar 

  21. K. Sue, K. Murata, K. Kimura, K. Arai, Continuous synthesis of zinc oxide nanoparticles in supercritical water. Green Chemistry, 2003, 5: 659–662.

    Article  CAS  Google Scholar 

  22. P. P. Sun, S. Z. Wang, T. Zhang, Y. H. Li, Y. Guo, Supercritical Hydrothermal Synthesis of Submicrometer Copper(II) Oxide: Effect of Reaction Conditions. Ind Eng Chem Res, 2017, 56: 6286–6294.

    Article  CAS  Google Scholar 

  23. Y. L. Hao, A. S. Teja, Continuous hydrothermal crystallization of alpha-Fe2O3 and Co3O4 nanoparticles. J Mater Res, 2003, 18: 415–422.

    Google Scholar 

  24. T. Mousavand, J. Zhang, S. Ohara, M. Umetsu, T. Naka, T. Adschiri, Organic-ligand-assisted supercritical hydrothermal synthesis of titanium oxide nanocrystals leading to perfectly dispersed titanium oxide nanoparticle in organic phase. J Nanopart Res, 2007, 9: 1067–1071.

    Article  CAS  Google Scholar 

  25. J. R. Eltzholtz, C. Tyrsted, K. M. O. Jensen, M. Bremholm, M. Christensen, J. Becker-Christensen, B. B. Iversen, Pulsed supercritical synthesis of anatase TiO2 nanoparticles in a water-isopropanol mixture studied by in situ powder X-ray diffraction. Nanoscale, 2013, 5: 2372–2378.

    Article  CAS  Google Scholar 

  26. N. M. Makwana, C. J. Tighe, R. I. Gruar, P. F. McMillan, J. A. Darr, Pilot plant scale continuous hydrothermal synthesis of nano-titania; effect of size on photocatalytic activity. Mater Sci Semicond Process, 2016, 42: 131–137.

    Article  CAS  Google Scholar 

  27. J. L. Mi, C. Clausen, M. Bremholm, N. Lock, K. M. O. Jensen, M. Christensen, B. B. Iversen, Rapid Hydrothermal Preparation of Rutile TiO2 Nanoparticles by Simultaneous Transformation of Primary Brookite and Anatase: An in Situ Synchrotron PXRD Study. Crystal Growth & Design, 2012, 12: 6092–6097.

    Google Scholar 

  28. J. L. Mi, S. Johnsen, C. Clausen, P. Hald, N. Lock, L. So, B. B. Iversen, Highly controlled crystallite size and crystallinity of pure and iron-doped anatase-TiO2 nanocrystals by continuous flow supercritical synthesis. J Mater Res, 2013, 28: 333–339.

    Article  Google Scholar 

  29. S. Kawasaki, Y. Xiuyi, K. Sue, Y. Hakuta, A. Suzuki, K. Arai, Continuous supercritical hydrothermal synthesis of controlled size and highly crystalline anatase TiO2 nanoparticles. J Supercrit Fluids, 2009, 50: 276–282.

    Article  CAS  Google Scholar 

  30. H. Hayashi, K. Torii, Hydrothermal synthesis of titania photocatalyst under subcritical and supercritical water conditions. J Mater Chem, 2002, 12: 3671–3676.

    Article  CAS  Google Scholar 

  31. H. Choi, B. Veriansyah, J. Kim, J. D. Kim, J. W. Kang, Continuous synthesis of metal nanoparticles in supercritical methanol. J Supercrit Fluids, 2010, 52: 285–291.

    Article  CAS  Google Scholar 

  32. K. Jaehoon, K. Daewoo, B. Veriansyah, K. Jeong Won, K. Jae-Duck, Metal nanoparticle synthesis using supercritical alcohol. Mater Lett, 2009, 63: 1880–1882.

    Google Scholar 

  33. N. C. Shin, Y.-H. Lee, Y. H. Shin, J. Kim, Y.-W. Lee, Synthesis of cobalt nanoparticles in supercritical methanol. Mater Chem Phys, 2010, 124: 140–144.

    Article  CAS  Google Scholar 

  34. S. A. Hong, S. J. Kim, K. Y. Chung, M. S. Chun, B. G. Lee, J. Kim, Continuous synthesis of lithium iron phosphate (LiFePO4) nanoparticles in supercritical water: Effect of mixing tee. J Supercrit Fluids, 2013, 73: 70–79.

    Article  CAS  Google Scholar 

  35. C. Xue, T. X. Zhang, S. J. Ding, J. J. Wei, G. D. Yang, Anchoring Tailored Low-Index Faceted BiOBr Nanoplates onto TiO2 Nanorods to Enhance the Stability and Visible-Light-Driven Catalytic Activity. Acs Applied Materials & Interfaces, 2017, 9: 16091–16102.

    Google Scholar 

  36. M. Wagemaker, R. van de Krol, A. P. M. Kentgens, A. A. van Well, F. M. Mulder, Two phase morphology limits lithium diffusion in TiO2 (anatase): A Li-7 MAS NMR study. J Am Chem Soc, 2001, 123: 11454–11461.

    Google Scholar 

  37. S. Fukahori, H. Ichiura, T. Kitaoka, H. Tanaka, Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique. Environ Sci Technol, 2003, 37: 1048–1051.

    Article  CAS  Google Scholar 

  38. A. Hagfeldt, M. Gratzel, Molecular photovoltaics. Acc Chem Res, 2000, 33: 269–277.

    Article  CAS  Google Scholar 

  39. M. Dahl, Y. Liu, Y. Yin, Composite Titanium Dioxide Nanomaterials. Chem Rev, 2014, 114: 9853.

    Google Scholar 

  40. X. Chen, A. Selloni, Introduction: Titanium Dioxide (TiO 2) Nanomaterials. Chem Rev, 2014, 114: 9281.

    Article  CAS  Google Scholar 

  41. J. W. Zhu, H. P. Bi, Y. P. Wang, X. Wang, X. J. Yang, L. Lu, CuO nanocrystals with controllable shapes grown from solution without any surfactants. Mater Chem Phys, 2008, 109: 34–38.

    Article  CAS  Google Scholar 

  42. G. Q. Yuan, H. F. Jiang, C. Lin, S. J. Liao, Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals. J Cryst Growth, 2007, 303: 400–406.

    Article  CAS  Google Scholar 

  43. J. Morales, L. Sanchez, F. Martin, J. R. Ramos-Barrado, M. Sanchez, Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochim Acta, 2004, 49: 4589–4597.

    Article  CAS  Google Scholar 

  44. G. Q. Jian, L. Liu, M. R. Zachariah, Facile Aerosol Route to Hollow CuO Spheres and its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators. Adv Funct Mater, 2013, 23: 1341–1346.

    Article  Google Scholar 

  45. J. T. Chen, F. Zhang, J. Wang, G. A. Zhang, B. B. Miao, X. Y. Fan, D. Yan, P. X. Yan, CuO nanowires synthesized by thermal oxidation route. J Alloys Compd, 2008, 454: 268–273.

    Article  CAS  Google Scholar 

  46. S. Anandan, G. J. Lee, J. J. Wu, Sonochemical synthesis of CuO nanostructures with different morphology. Ultrason Sonochem, 2012, 19: 682–686.

    Article  CAS  Google Scholar 

  47. M. Kim, W. S. Son, K. H. Ahn, D. S. Kim, H. S. Lee, Y. W. Lee, Hydrothermal synthesis of metal nanoparticles using glycerol as a reducing agent. J Supercrit Fluids, 2014, 90: 53–59.

    Article  CAS  Google Scholar 

  48. K. Sue, S. Kawasaki, M. Suzuki, Y. Hakuta, H. Hayashi, K. Arai, Y. Takebayashi, S. Yoda, T. Furuya, Continuous hydrothermal synthesis of Fe2O3, NiO, and CuO nanoparticles by superrapid heating using a T-type micro mixer at 673 K and 30 MPa. Chem Eng J, 2011, 166: 947–953.

    Article  CAS  Google Scholar 

  49. M. Outokesh, M. Hosseinpour, S. J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Hydrothermal Synthesis of CuO Nanoparticles: Study on Effects of Operational Conditions on Yield, Purity, and Size of the Nanoparticles. Ind Eng Chem Res, 2011, 50: 3540–3554.

    Article  CAS  Google Scholar 

  50. K. Sue, M. Suzuki, K. Arai, T. Ohashi, H. Ura, K. Matsui, Y. Hakuta, H. Hayashi, M. Watanabe, T. Hiaki, Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chemistry, 2006, 8: 634–638.

    Article  CAS  Google Scholar 

  51. P. Y. Wang, K. Ueno, H. Takigawa, K. Kobiro, Versatility of one-pot, single-step synthetic approach for spherical porous (metal) oxide nanoparticles using supercritical alcohols. J Supercrit Fluids, 2013, 78: 124–131.

    Article  Google Scholar 

  52. K. Sue, N. Kakinuma, T. Adschiri, K. Arai, Continuous production of nickel fine particles by hydrogen reduction in near-critical water. Ind Eng Chem Res, 2004, 43: 2073–2078.

    Article  CAS  Google Scholar 

  53. K. Sue, Y. Hakuta, R. L. Smith, T. Adschiri, K. Arai, Solubility of lead(II) oxide and copper(II) oxide in subcritical and supercritical water. J Chem Eng Data, 1999, 44: 1422–1426.

    Article  CAS  Google Scholar 

  54. Y. Hakuta, H. Ura, H. Hayashi, K. Arai, Effects of hydrothermal synthetic conditions on the particle size of gamma-AlO(OH) in sub and supercritical water using a flow reaction system. Mater Chem Phys, 2005, 93: 466–472.

    Article  CAS  Google Scholar 

  55. H. Hayashi, A. Suino, K. Shimoyama, M. Takesue, S. Tooyama, R. L. Smith, Jr., Continuous hydrothermal synthesis of ZnGa2O4:Mn2 + nanoparticles at temperatures of 300–500 degrees C and pressures of 25-35 MPa. J Supercrit Fluids, 2013, 77: 1-6.

    Google Scholar 

  56. Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow, 2000, 21: 58–64.

    Article  CAS  Google Scholar 

  57. L.-Y. Shao, J. P. Coyle, S. T. Barry, J. Albert, Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers [Invited]. Optical Materials Express, 2011, 1: 128–137.

    Article  CAS  Google Scholar 

  58. J. Toyir, P. R. r. de la Piscina, J. L. G. Fierro, N. s. Homs, Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: influence of support and promoter. Applied Catalysis B: Environmental, 2001, 29: 207–215.

    Article  CAS  Google Scholar 

  59. E. K. Athanassiou, R. N. Grass, W. J. Stark, Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology, 2006, 17: 1668–1673.

    Article  CAS  Google Scholar 

  60. H. L. Yu, Y. Xu, P. J. Shi, B. S. Xu, X. L. Wang, Q. Liu, Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Transactions of Nonferrous Metals Society of China, 2008, 18: 636–641.

    Article  CAS  Google Scholar 

  61. S. Kubota, T. Morioka, M. Takesue, H. Hayashi, M. Watanabe, R. L. Smith, Continuous supercritical hydrothermal synthesis of dispersible zero-valent copper nanoparticles for ink applications in printed electronics. J Supercrit Fluids, 2014, 86: 33–40.

    Article  CAS  Google Scholar 

  62. C. G. Wen, K. M. Wang, X. Q. Li, S. S. Gao, W. L. Huan, Y. Zhao, Preparation of copper nanoparticles using liquid phase precipitation method. J. Anshan Univ. Sci. Technol., 2003, 26: 176–178.

    Google Scholar 

  63. S. I. Kawasaki, K. Sue, R. Ookawara, Y. Wakashima, A. Suzuki, Y. Hakuta, K. Arai, Engineering study of continuous supercritical hydrothermal method using a T-shaped mixer: Experimental synthesis of NiO nanoparticles and CFD simulation. J Supercrit Fluids, 2010, 54: 96–102.

    Article  CAS  Google Scholar 

  64. A. Leybros, R. Piolet, M. Ariane, H. Muhr, F. Bernard, F. Demoisson, CFD simulation of ZnO nanoparticle precipitation in a supercritical water synthesis reactor. Journal of Supercritical Fluids the, 2012, 70: 17–26.

    Article  CAS  Google Scholar 

  65. C. Y. Ma, M. Chen, X. Z. Wang, Modelling and simulation of counter-current and confined jet reactors for hydrothermal synthesis of nano-materials. Chem Eng Sci, 2014, 109: 26–37.

    Article  CAS  Google Scholar 

  66. K. Sue, T. Sato, S. Kawasaki, Y. Takebayashi, S. Yoda, T. Furuya, T. Hiaki, Continuous Hydrothermal Synthesis of Fe2O3 Nanoparticles Using a Central Collision-Type Micromixer for Rapid and Homogeneous Nucleation at 673 K and 30 MPa. Ind Eng Chem Res, 2010, 49: 8841–8846.

    Article  CAS  Google Scholar 

  67. J. Sierra-Pallares, D. L. Marchisio, E. Alonso, M. Teresa Parra-Santos, F. Castro, M. Jose Cocero, Quantification of mixing efficiency in turbulent supercritical water hydrothermal reactors. Chem Eng Sci, 2011, 66: 1576–1589.

    Google Scholar 

  68. R. O. Fox, Computational Models for Turbulent Reacting Flows. Cambridge University Press: New York, 2003.

    Google Scholar 

  69. Y. Hakuta, H. Hayashi, K. Arai, Fine particle formation using supercritical fluids. Current Opinion in Solid State & Materials Science, 2003, 7: 341–351.

    Google Scholar 

  70. S. Takami, K.-i. Sugioka, T. Tsukada, T. Adschiri, K. Sugimoto, N. Takenaka, Y. Saito, Neutron radiography on tubular flow reactor for hydrothermal synthesis: In situ monitoring of mixing behavior of supercritical water and room-temperature water. The Journal of Supercritical Fluids, 2012, 63: 46–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Xi'an Jiaotong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S. et al. (2020). Supercritical Hydrothermal Synthesis of Inorganic Nanomaterials. In: Supercritical Water Processing Technologies for Environment, Energy and Nanomaterial Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-9326-6_5

Download citation

Publish with us

Policies and ethics