Skip to main content

Abstract

Sewage sludge (SS) with a moisture content of about 80 wt% is a byproduct of wastewater treatment. With the development of the urbanization process, this amount has been increasing with the construction and expansion of wastewater treatment plants. Containing complex organic matters as well as heavy metal and viruses, SS is not only a pollutant but also a wet resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Goto, T. Nada, S. Kawajiri, A. Kodama, T. Hirose, Decomposition of municipal sludge by supercritical water oxidation. J Chem Eng Japan, 1997, 30: 813–818.

    Article  CAS  Google Scholar 

  2. M. Goto, T. Nada, A. Kodama, T. Hirose, Kinetic Analysis for Destruction of Municipal Sewage Sludge and Alcohol Distillery Wastewater by Supercritical Water Oxidation. Ind Eng Chem Res, 1999, 38: 1863–1865.

    Article  CAS  Google Scholar 

  3. K. M. Benjamin, P. E. Savage, Hydrothermal reactions of methylamine. J Supercrit Fluids, 2004, 31: 301–311.

    Article  CAS  Google Scholar 

  4. O. M. Ogunsola, Decomposition of isoquinoline and quinoline by supercritical water. J Hazard Mater, 2000, 74: 187–195.

    Article  CAS  Google Scholar 

  5. P. A. Webley, J. W. Tester, H. R. Holgate, Oxidation-kinetics of Ammonla and Ammonla-methanol Mixtures in Supercritical WAater in the Temperature-range 530-Degrees-C 700-Degrees-C at 246 BAR. Ind. Eng. Chem. Res., 1991, 30: 1745–1754.

    Article  CAS  Google Scholar 

  6. N. Segond, Y. Matsumura, K. Yamamoto, Determination of ammonia oxidation rate in sub- and supercritical water. Ind. Eng. Chem. Res., 2002, 41: 6020–6027.

    Article  CAS  Google Scholar 

  7. H.-C. Lee, J.-H. In, K.-Y. Hwang, C.-H. Lee, Decomposition of ethylenediaminetetraacetic acid by supercritical water oxidation. Ind Eng Chem Res, 2004, 43: 3223–3227.

    Article  CAS  Google Scholar 

  8. X. Du, R. Zhang, Z. Gan, J. Bi, Treatment of high strength coking wastewater by supercritical water oxidation. Fuel, 2013, 104: 77–82.

    Article  CAS  Google Scholar 

  9. F. M. Jin, T. Moriya, H. Enomoto. Oxidation reaction of high molecular weight carboxylic acids in supercritical water. Environmental Science & Technology, 2003, 37 (14): 3220–3231.

    Google Scholar 

  10. K. Okuda, M. Umetsu, S. Takami, T. Adschiri, Disassembly of lignin and chemical recovery - rapid depolymerization of lignin without char formation in water-phenol mixtures. Fuel Process Technol, 2004, 85: 803–813.

    Article  CAS  Google Scholar 

  11. Wahyudiono, M. Sasaki, M. Goto, Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chem Eng Process, 2008, 47: 1609–1619.

    Article  CAS  Google Scholar 

  12. A. Sinag, A. Kruse, V. Schwarzkopf, Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind Eng Chem Res, 2003, 42: 3516–3521.

    Google Scholar 

  13. A. Kruse, P. Maniam, F. Spieler, Influence of Proteins on the Hydrothermal Gasification and Liquefaction of Biomass. 2. Model Compounds. Ind Eng Chem Res, 2006, 46: 87–96.

    Article  CAS  Google Scholar 

  14. J. R. Heberle, C. F. Edwards, Coal energy conversion with carbon sequestration via combustion in supercritical saline aquifer water. International Journal of Greenhouse Gas Control, 2009, 3: 568–576.

    Article  CAS  Google Scholar 

  15. N. Akiya, P. E. Savage, Roles of Water for Chemical Reactions in High-Temperature Water. Chemical Reviews, 2002, 102: 2725–2750.

    Article  CAS  Google Scholar 

  16. Y. Guo, S. Z. Wang, D. H. Xu, Y. M. Gong, H. H. Ma, X. Y. Tang, Review of catalytic supercritical water gasification for hydrogen production from biomass. Renewable and Sustainable Energy Reviews, 2010, 14: 334–343.

    Article  CAS  Google Scholar 

  17. T. Oe, H. Suzugaki, I. Naruse, A. T. Quitain, H. Daimon, K. Fujie, Role of Methanol in Supercritical Water Oxidation of Ammonia. Industrial & Engineering Chemistry Research, 2007, 46: 3566–3573.

    Google Scholar 

  18. M. W. Haenel, Recent progress in coal structure research. Fuel, 1992, 71: 1211–1223.

    Article  CAS  Google Scholar 

  19. P. Dagaut, M. Cathonnet, J.-C. Boettner, Chemical kinetic modeling of the supercritical-water oxidation of methanol. The Journal of Supercritical Fluids, 1996, 9: 33–42.

    Article  CAS  Google Scholar 

  20. P. E. Savage, J. Yu, N. Stylski, E. E. Brock, Kinetics and mechanism of methane oxidation in supercritical water. The Journal of Supercritical Fluids, 1998, 12: 141–153.

    Article  CAS  Google Scholar 

  21. P. Kjeldsen, M. A. Barlaz, A. P. Rooker, A. Baun, A. Ledin, T. H. Christensen, Present and long-term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology, 2002, 32: 297–336.

    Article  CAS  Google Scholar 

  22. J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, J. V. Weber, Landfill leachate treatment methods: A review. Environmental Chemistry Letters, 2006, 4: 51–61.

    Article  CAS  Google Scholar 

  23. Y. M. Gong, S. Z. Wang, X. Y. Tang, D. H. Xu, H. H. Ma, Supercritical water oxidation of acrylic acid production wastewater. Environ Technol, 2014, 35: 907–916.

    Article  CAS  Google Scholar 

  24. Y. W. Lee, B. Veriansyah, T. J. Park, J. S. Lim, Supercritical water oxidation of wastewater from LCD manufacturing process: kinetic and formation of chromium oxide nanoparticles. Journal of Supercritical Fluids, 2005, 34: 51–61.

    Google Scholar 

  25. H. Erkonak, O. O. Sogut, M. Akgun, Treatment of olive mill wastewater by supercritical water oxidation. J. Supercrit. Fluid., 2008, 46: 142–148.

    Article  CAS  Google Scholar 

  26. F. Vogel, J. L. D. Blanchard, P. A. Marrone, S. F. Rice, P. A. Webley, W. A. Peters, K. A. Smith, J. W. Tester, Critical review of kinetic data for the oxidation of methanol in supercritical water. J. Supercrit. Fluid., 2005, 34: 249–286.

    Article  CAS  Google Scholar 

  27. W. J. Gong, X. J. Duan, Degradation of landfill leachate using transpiring-wall supercritical water oxidation (SCWO) reactor. Waste Management, 2010, 30: 2103–2107.

    Article  CAS  Google Scholar 

  28. M. D. Bermejo, M. J. Cocero, Supercritical water oxidation: A technical review. Aiche J., 2006, 52: 3933–3951.

    Article  CAS  Google Scholar 

  29. Z. B. Wu, R. B. Jin, Y. Liu, H. Q. Wang, Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications, 2008, 9: 2217–2220.

    Google Scholar 

  30. M. Machida, M. Uto, D. Kurogi, T. Kijima, MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. Sorptive removal of NOx. Chemistry of Materials, 2000, 12: 3158–3164.

    Google Scholar 

  31. P. E. Savage, J. B. Dunn, J. L. Yu, Recent advances in catalytic oxidation in supercritical water. Combust. Sci. Technol., 2006, 178: 443–465.

    Google Scholar 

  32. Z. Y. Ding, L. X. Li, D. Wade, E. F. Gloyna, Supercritical water oxidation of NH3 over a MnO2/CeO2 catalyst. Ind. Eng. Chem. Res., 1998, 37: 1707–1716.

    Google Scholar 

  33. X. Q. Dong, Y. N. Zhang, Y. W. Xu, M. H. Zhang, Catalytic mechanism study on manganese oxide in the catalytic supercritical water oxidation of nitrobenzene. Rsc Advances, 2015, 5: 47488–47497.

    Article  CAS  Google Scholar 

  34. E. Shoko, B. McLellan, A. L. Dicks, Hydrogen from coal: Production and utilisation technologies. Int. J. Coal Geol., 2006, 65: 213.

    Article  CAS  Google Scholar 

  35. D. Feng, Z. Yu, Y. Chen, Y. Qian, Novel Single Stripper with Side-Draw to Remove Ammonia and Sour Gas Simultaneously for Coal-Gasification Wastewater Treatment and the Industrial Implementation. Ind Eng Chem Res, 2009, 48: 5816.

    Article  CAS  Google Scholar 

  36. H. Erkonak, O. O. Sogut, M. Akgun, Treatment of olive mill wastewater by supercritical water oxidation. J. Supercrit. Fluid., 2008, 46: 142.

    Article  CAS  Google Scholar 

  37. R. Sridhar, V. Sivakumar, V. P. Immanuel, J. P. Maran, Development of model for treatment of pulp and paper industry bleaching effluent using response surface methodology. Environmental Progress & Sustainable Energy, 2012, 31: 558–565.

    Google Scholar 

  38. M. D. Bermejo, F. Cantero, M. J. Cocero, Supercritical water oxidation of feeds with high ammonia concentrations: Pilot plant experimental results and modeling. Chem Eng J, 2008, 137: 542–549.

    Article  CAS  Google Scholar 

  39. M. Goto, D. Shiramizu, A. Kodama, T. Hirose, Kinetic analysis for ammonia decomposition in supercritical water oxidation of sewage sludge. Ind Eng Chem Res, 1999, 38: 4500.

    Article  CAS  Google Scholar 

  40. T. Mizuno, M. Goto, A. Kodama, T. Hirose, Supercritical water oxidation of a model municipal solidwaste. Ind Eng Chem Res, 2000, 39: 2807.

    Article  CAS  Google Scholar 

  41. N. Segond, Y. Matsumura, K. Yamamoto, Determination of ammonia oxidation rate in sub- and supercritical water. Ind Eng Chem Res, 2002, 41: 6020.

    Article  CAS  Google Scholar 

  42. K. M. Benjamin, P. E. Savage, Supercritical water oxidation of methylamine. Ind Eng Chem Res, 2005, 44: 5318.

    Article  CAS  Google Scholar 

  43. M. Krajnc, J. Levec, Oxidation of phenol over a transition-metal oxide catalyst in supercritical water. Ind Eng Chem Res, 1997, 36: 3439.

    Article  CAS  Google Scholar 

  44. Z. Y. Ding, L. Li, D. Wade, E. F. Gloyna, Supercritical water oxidation of NH3 over a MnO2/CeO2 catalyst. Ind Eng Chem Res, 1998, 37: 1707.

    Article  Google Scholar 

  45. M. J. Angeles-Hernandez, G. A. Leeke, R. C. D. Santos, Catalytic supercritical water oxidation for the destruction of quinoline over MnO2/CuO mixed catalyst. Ind Eng Chem Res, 2009, 48: 1208.

    Google Scholar 

  46. Z. Y. Ding, S. N. V. K. Aki, M. A. Abraham, K. W. Hutchenson, N. R. Foster, Innovations in Supercritical Fluids Science and Technology. Vol. 608. 1995. 232.

    Google Scholar 

  47. R. Hayashi, K. Ohkuma, K. Tonokura, Y. Oshima, Contribution of ionic reactions to sub- and supercritical water oxidation of phenol. J. Chem. Eng. Jpn., 2007, 40: 556.

    Article  CAS  Google Scholar 

  48. C. J. Martino, P. E. Savage, Supercritical water oxidation kinetics and pathways for ethylphenols, hydroxyacetophenones, and other monosubstituted phenols. Ind Eng Chem Res, 1999, 38: 1775.

    Article  CAS  Google Scholar 

  49. J. L. Yu, P. E. Savage, Catalytic oxidation of phenol over MnO2 in supercritical water. Ind Eng Chem Res, 1999, 38: 3793.

    Article  CAS  Google Scholar 

  50. W. J. Gong, L. Fang, D. L. Xi, Supercritical water oxidation CI disperse red 60 dyeing wastewater using transpiring water reactor. Prog Env Sci Tec, 2007, 1: 836.

    Google Scholar 

  51. E. Kipcak, M. Akgün, In situ gas fuel production during the treatment of textile wastewater at supercritical conditions. Water Sci Technol, 2013, 67: 1058.

    Google Scholar 

  52. O. Söğüt, M. Akgün, Treatment of textile wastewater by SCWO in a tube reactor. J Supercrit Fluid, 2007, 43: 106.

    Article  CAS  Google Scholar 

  53. O. Söğüt, M. Akgün, Treatment of dyehouse waste-water by supercritical water oxidation: a case study. J Chem Technol Biot, 2010, 85: 640.

    Google Scholar 

  54. F. H. Hussein, Effect of Photocatalytic Treatments on Physical and Biological Properties of Textile Dyeing Wastewater. ASIAN JOURNAL OF CHEMISTRY, 2013, 25: 9387–9392.

    Article  CAS  Google Scholar 

  55. R. M. Jain, K. H. Mody, J. Keshri, B. Jha, Biological neutralization and biosorption of dyes of alkaline textile industry wastewater. Marine Pollution Bulletin, 2014, 84: 83–89.

    Article  CAS  Google Scholar 

  56. M. Goto, T. Nada, A. Kodama, T. Hirose, Kinetic analysis for destruction of municipal sewage sludge and alcohol distillery wastewater by supercritical water oxdation. Ind. Eng. Chem. Res., 1999, 38: 1863–1865.

    Article  CAS  Google Scholar 

  57. James W. Griffith, D. H. Raymond, The first commercial supercritical water oxidation sludge processing plant. Waste Management, 2002, 22: 453–459.

    Article  CAS  Google Scholar 

  58. Jing GL, Qin SP, Cui BC, Li M, Xing LJ, L. SL., Oxidation of Oilfield Sludge in Supercritical Water. Research Journal of Chemistry and Environment, 2009, 13: 18–22.

    Google Scholar 

  59. B.-c. Cui, S.-z. Liu, F.-y. Cui, G.-l. Jing, X.-j. Liu, Lumped kinetics for supercritical water oxidation of oily sludge. Process. Saf. Environ., 2011, 89: 198–203.

    Article  CAS  Google Scholar 

  60. J. Zhang, S. Wang, Y. Li, J. Lu, S. Chen, X. Luo, Supercritical water oxidation treatment of textile sludge. Environ Technol, 2017, 38: 1949–1960.

    Article  CAS  Google Scholar 

  61. N. Boukis, V. Diem, W. Habicht, E. Dinjus, Methanol reforming in supercritical water. Ind. Eng. Chem. Res., 2003, 42: 728–735.

    Article  CAS  Google Scholar 

  62. P. T. Williams, J. Onwudili, Composition of Products from the Supercritical Water Gasification of Glucose:  A Model Biomass Compound. Industrial & Engineering Chemistry Research, 2005, 44: 8739–8749.

    Google Scholar 

  63. P. T. Williams, J. Onwudili, Subcritical and Supercritical Water Gasification of Cellulose, Starch, Glucose, and Biomass Waste. Energy & Fuels, 2006, 20: 1259–1265.

    Google Scholar 

  64. R. Muangrat, J. A. Onwudili, P. T. Williams, Reaction products from the subcritical water gasification of food wastes and glucose with NaOH and H2O2. Bioresource. Technol., 2010, 101: 6812–6821.

    Google Scholar 

  65. Y. Guo, S. Wang, Y. Wang, J. Zhang, D. Xu, Y. Gong, Gasification of two and three-components mixture in supercritical water: Influence of NaOH and initial reactants of acetic acid and phenol. Int J Hydrogen Energy, 2012, 37: 2278–2286.

    Article  CAS  Google Scholar 

  66. W.-J. Gong, F. Li, D.-L. Xi, Supercritical Water Oxidation of Acrylic Acid Production Wastewater in Transpiring Wall Reactor. Environ. Eng. Sci., 2009, 26: 131–136.

    Article  CAS  Google Scholar 

  67. V. M. Bednarik V, Removal of formaldehyde from acrylic acid production wastewater. Environ Eng Sci., 2003, 20: 703–707.

    Article  CAS  Google Scholar 

  68. B. Veriansyah, T. J. Park, J. S. Lim, Y. W. Lee, Supercritical water oxidation of wastewater from LCD manufacturing process: kinetic and formation of chromium oxide nanoparticles. J. Supercrit. Fluid., 2005, 34: 51–61.

    Article  CAS  Google Scholar 

  69. W. Gong, X. Duan, Degradation of landfill leachate using transpiring-wall supercritical water oxidation (SCWO) reactor. Waste Manage., 2010, 30: 2103–2107.

    Article  CAS  Google Scholar 

  70. P. C. Mandal, Wahyudiono, M. Sasaki, M. Goto, Reduction of total acid number (TAN) of naphthenic acid (NA) using supercritical water for reducing corrosion problems of oil refineries. Fuel, 2012, 94: 620–623.

    Article  CAS  Google Scholar 

  71. S. Wang, Y. Guo, L. Wang, Y. Wang, D. Xu, H. Ma, Supercritical water oxidation of coal: Investigation of operating parameters’ effects, reaction kinetics and mechanism. Fuel Process. Technol, 2011, 92: 291–297.

    Article  CAS  Google Scholar 

  72. S. Koda, N. Kanno, H. Fujiwara, Kinetics of supercritical water oxidation of methanol studied in a CSTR by means of Raman spectroscopy. Ind. Eng. Chem. Res., 2001, 40: 3861–3868.

    Article  CAS  Google Scholar 

  73. T. B. H. Steven F. Rice, Åsa C. Rydén, and Russell G. Hanush, Raman spectroscopic measurement of oxidation in supercritical water. 1. Conversion of methanol to formaldehyde. Industrial & engineering chemistry research 1996, 35: 2161–2171.

    Google Scholar 

  74. H. S. S. Baura, A.Krämerb, J. Gerberb, The destruction of industrial aqueous waste containing biocides in supercritical water—development of the SUWOX process for the technical application[The Journal of supercritical fluids, 2005, 33.

    Google Scholar 

  75. D. Xu, S. Wang, J. Zhang, X. Tang, Y. Guo, C. Huang, Supercritical water oxidation of a pesticide wastewater. Chem. Eng. Res. Des., 2015, 94: 396–406.

    Article  CAS  Google Scholar 

  76. K. P., Corrosion in high-temperature and supercritical water and aqueous solutions: a review. The Journal of Supercritical Fluids, 2004, 29: 1–29.

    Article  CAS  Google Scholar 

  77. M. B. Garcia Jarana, J. Sanchez-Oneto, J. R. Portela, E. Nebot Sanz, E. J. Martinez de la Ossa, Supercritical water gasification of industrial organic wastes. J. Supercrit. Fluid., 2008, 46: 329–334.

    Article  CAS  Google Scholar 

  78. M. C. Zhang J, Reaction mechanism and influence factors of ethylenediamine wastewater treated by supercritical water oxidation. 5th International Conference on Bioinformatics and Biomedical Engineering, 2011.

    Google Scholar 

  79. V. I. Anikeev, A. Yermakova, Technique for complete oxidation of organic compounds in supercritical water. Russ. J. Appl. Chem + . 2011, 84: 88–94.

    Article  CAS  Google Scholar 

  80. O. Ö. Sögüt, Ekin, K., Akgün, M.,, Treatment of whey wastewater by supercritical water oxidation. Water Sci. Technol., 2011a, 63: 908–916.

    Article  CAS  Google Scholar 

  81. S. Wang, Y. Guo, C. Chen, J. Zhang, Y. Gong, Y. Wang, Supercritical water oxidation of landfill leachate. Waste Manage., 2011, 31: 2027–2035.

    Article  CAS  Google Scholar 

  82. E. D. A. Kruse, Hot compressed water as reaction medium and reactant: properties and synthesis reactions. J. Supercrit. Fluids, 2007, 39: 362–380.

    Article  CAS  Google Scholar 

  83. T.-N. Wang, L. Lu, G.-F. Li, J. Li, T.-F. Xu, M. Zhao, Decolorization of the azo dye reactive black 5 using laccase mediator system. African Journal of Biotechnology, 2011, 10: 17186–17191.

    Google Scholar 

  84. O. O. Sogut, M. Akgun, Treatment of dyehouse waste-water by supercritical water oxidation: a case study. J. Chem. Technol. Biot., 2010, 85: 640–647.

    Google Scholar 

  85. J. Zhang, S. Wang, Y. Guo, D. Xu, Y. Gong, X. Tang, Experimental study on supercritical water oxidation of CI Reactive Orange 7 dye wastewater using response surface methodology. Color. Technol., 2012, 128: 323–330.

    Article  CAS  Google Scholar 

  86. O. Y. J. Li H, Elementary reaction mechanism of methylamine oxidation in supercritical water. Ind. Eng. Chem. Res., 2005, 44: 8756–8764.

    Article  CAS  Google Scholar 

  87. M. D. Bermejo, F. Cantero, M. J. Cocero, Supercritical water oxidation of feeds with high ammonia concentrations Pilot plant experimental results and modeling. Chem. Eng. J., 2008, 137: 542–549.

    Article  CAS  Google Scholar 

  88. a. P. E. S. Kenneth M. Benjamin, Supercritical Water Oxidation of Methylamine. Ind. Eng. Chem. Res., 2005, 44: 5318–5324.

    Article  CAS  Google Scholar 

  89. W.-L. Chou, C.-T. Wang, K.-Y. Huang, Investigation of process parameters for the removal of polyvinyl alcohol from aqueous solution by iron electrocoagulation. Desalination., 2010, 251: 12–19.

    Article  CAS  Google Scholar 

  90. Y. H. Q. Zhang S J, Ge X W, Zhu R F, Optimization of radiolytic degradation of poly(vinyl alcohol). Engineering Chemistry Research, 2005, 44: 1995–2001.

    Article  CAS  Google Scholar 

  91. W.-L. Chou, C.-T. Wang, C.-W. Hsu, K.-Y. HuangA, T.-C. Liu, Removal of total organic carbon from aqueous solution containing polyvinyl alcohol by electrocoagulation technology. Desalination., 2010, 259: 103–110.

    Article  CAS  Google Scholar 

  92. O. M. Hayashi R, Sugiyama M, Koda S, Oshima Y, Kinetic analysis on alcohol concentration and mixture effect in supercritical water oxidation of methanol and ethanol by elementary reaction model. The Journal of Supercritical Fluids, 2007, 40: 74–83.

    Article  CAS  Google Scholar 

  93. L. L. T. Hsu L J, Lin C C, Adsorption and photocatalytic degradation of polyvinyl alcohol in aqueous solutions using P-25 TiO2. Chem. Eng. J., 2011, 173: 698–705.

    Article  CAS  Google Scholar 

  94. J. Zhang, S. Wang, Y. Guo, D. Xu, Y. Gong, X. Tang, Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: Influence of NaOH on the organic decomposition. Journal of Environmental Sciences-China, 2013, 25: 1583–1591.

    Article  CAS  Google Scholar 

  95. R. Hayashi, M. Onishi, M. Sugiyama, S. Koda, Y. Oshima, Kinetic analysis on alcohol concentration and mixture effect in supercritical water oxidation of methanol and ethanol by elementary reaction model. J. Supercrit. Fluid., 2007, 40: 74–83.

    Article  CAS  Google Scholar 

  96. B. P. A. Ploeger J M, Lachance R P, Tester J W, Co-oxidation of methylphosphonic acid and ethanol in supercritical water ¢: Experimental results. The Journal of Supercritical Fluids, 2006, 39: 233–238.

    Article  CAS  Google Scholar 

  97. A. Loppinet-Serani, C. Aymonier, F. Cansell, Current and Foreseeable Applications of Supercritical Water for Energy and the Environment. Chemsuschem, 2008, 1: 486–503.

    Article  CAS  Google Scholar 

  98. C. E. Rice S F, Oxidation of simple alcohols in supercritical water III. Formation of intermediates from ethanol. In: Ind. Eng. Chem. Res., 2000, American Chemical Society.: 86–93.

    Google Scholar 

  99. W. P. T. Onwudili J A, Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions. The Journal of Supercritical Fluids, 2007, 39: 399–408.

    Article  CAS  Google Scholar 

  100. J. Zhang, S. Wang, Y. Guo, D. Xu, X. Li, X. Tang, Co-Oxidation Effects of Methanol on Acetic Acid and Phenol in Supercritical Water. Ind. Eng. Chem. Res., 2013, 52: 10609–10618.

    Article  CAS  Google Scholar 

  101. R. T. T. Skodje, A. S.; Klippenstein, S. J.; Harding, L. B.; Davis, M. J., Theoretical validation of chemical kinetic mechanisms: Combustion of methanol. J. Phys. Chem. A, 2010, 114.

    Google Scholar 

  102. S. H. Rice, T.; Ryden, A.; Hanush, R., Raman spectroscopic measurement of oxidation in supercritical water. 1. Conversion of methanol to formaldehyde. Ind. Eng. Chem. Res, 1996, 35: 2161–2171.

    Article  CAS  Google Scholar 

  103. J. L. H. DiNaro, J. B.; Green, W. H.; Tester, J. W.; Bozzelli, J. W., Elementary reaction mechanism for benzene oxidatio in supercritical water. J. Phys. Chem. A, 2000, 104: 10576–10586.

    Article  CAS  Google Scholar 

  104. S. Gopalan, P. E. Savage, Reaction mechanism for phenol oxidation in supercritical water. J. Phys. Chem., 1994, 98: 12646–12652.

    Article  CAS  Google Scholar 

  105. D. Cao, X. Wang, L. Lei, L. Ma, F. Wang, C. Wang, M. Tang, W. Xiang, T. Wang, H. Li, L. Chen, Synthesis, in vitro and in vivo evaluation of novel substituted N-(4-(2-(4-benzylpiperazin-1-yl)ethoxy)phenyl)-N-methylquinazolin-4-amin es as potent antitumor agents. Bioorg. Med. Chem. Lett, 2016, 26: 1931–1935.

    Article  CAS  Google Scholar 

  106. I. Khan, A. Ibrar, N. Abbas, A. Saeed, Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76: 193–244.

    Google Scholar 

  107. E. Kaiser, C. Prasse, M. Wagner, K. Broeder, T. A. Ternes, Transformation of Oxcarbazepine and Human Metabolites of Carbamazepine and Oxcarbazepine in Wastewater Treatment and Sand Filters. Environ. Sci. Technol., 2014, 48: 10208–10216.

    Article  CAS  Google Scholar 

  108. H. R. A. Tina Kosjek, Boris Kompare, Anna Ledin and Ester Heath, Fate of Carbamazepine during Water Treatment. Environ. Sci. Technol., 2009, 43: 6256–6261.

    Article  CAS  Google Scholar 

  109. L. D. S. Pinto, L. M. F. dos Santos, R. C. D. Santos, B. Al-Duri, Supercritical water oxidation of quinoline in a continuous plug flow reactor - part 2: kinetics. J. Chem. Technol. Biot., 2006, 81: 919–926.

    Article  CAS  Google Scholar 

  110. S. Aki, M. A. Abraham, Catalytic supercritical water oxidation of pyridine: kinetics and mass transfer. Chem. Eng. Sci., 1999, 54: 3533–3542.

    Google Scholar 

  111. N. Crain, S. Tebbal, L. X. Li, E. F. Gloyna, KINETICS AND REACTION PATHWAYS OF PYRIDINE OXIDATION IN SUPERCRITICAL WATER. Ind. Eng. Chem. Res., 1993, 32: 2259–2268.

    Article  CAS  Google Scholar 

  112. S. Aki, M.A. Abraham. Catalytic supercritical water oxidation of pyridine: comparison of catalysts. Industrial & Engineering Chemistry Research, 1999a, 38 (2), 358–367.

    Google Scholar 

  113. S. Aki, M.A. Abraham. Catalytic supercritical water oxidation of pyridine: kinetics and mass transfer. Chemical Engineering Science, 1999b, 54 (15-16), 3533–3542.

    Article  Google Scholar 

  114. M. Gong, W. Zhu, Y. Fan, H. Zhang, Y. Su, Influence of the reactant carbon-hydrogen-oxygen composition on the key products of the direct gasification of dewatered sewage sludge in supercritical water. Bioresource. Technol., 2016, 208: 81–86.

    Article  CAS  Google Scholar 

  115. G. Anitescu, L. L. Tavlarides, Oxidation of biphenyl in supercritical water: Reaction kinetics, key pathways, and main products. Ind. Eng. Chem. Res., 2005, 44: 1226–1232.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Xi'an Jiaotong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S. et al. (2020). Oxidative Mechanisms and Kinetics of Organics in Supercritical Water. In: Supercritical Water Processing Technologies for Environment, Energy and Nanomaterial Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-9326-6_3

Download citation

Publish with us

Policies and ethics