Skip to main content

Life Cycle Assessment of Graphene as Heating Element

  • Conference paper
  • First Online:
Sustainable Design and Manufacturing 2019 (KES-SDM 2019)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 155))

Included in the following conference series:

Abstract

Among the various applications of graphene is the heating purpose due to its promising thermal conductivity. This paper presents a life cycle model of graphene, capturing the “cradle-to-gate” approach, focusing on energy consumption and environmental impact of graphene. The embodied energy consumption was calculated based on empirical data in scientific papers, patents and databases, while life cycle assessment modelling software was utilised for analysing its environmental impact. The result from the analysis shows that the embodied energy for the synthesis of 1 kg of graphene ranges between 264 and 304 MJ. Further analysis shows that 42% of graphene-embodied energy is consumed from powder preparation through to graphitisation process. Moreover, the result obtained from the modelling shows dust particles and CO2 emissions into air during graphene production. This paper should be followed by further study on graphene use and end-of-life phases to establish a comparison with the traditional heating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, J.H., Ahn, BDu, Kim, C.H., Jeon, K.A., Kang, H.S., Lee, S.Y.: Heat generation properties of Ga doped ZnO thin films prepared by rf-magnetron sputtering for transparent heaters. Thin Solid Films 516(7), 1330–1333 (2008). https://doi.org/10.1016/j.tsf.2007.03.100

    Article  Google Scholar 

  2. Kang, T.J., Kim, T., Seo, S.M., Park, Y.J., Kim, Y.H.: Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon 49(4), 1087–1093 (2011). https://doi.org/10.1016/j.carbon.2010.11.012

    Article  Google Scholar 

  3. Sui, D., Huang, Y., Huang, L., Liang, J., Ma, Y., Chen, Y.: Flexible and transparent electrothermal film heaters based on graphene materials. Small 7(22), 3186–3192 (2011). https://doi.org/10.1002/smll.201101305

    Article  Google Scholar 

  4. Yang, Y., et al.: Graphene-based materials with tailored nanostructures for energy conversion and storage. Mater. Sci. Eng.: R: Rep. 102, 1–72 (2016)

    Article  Google Scholar 

  5. Pathipati, S.R., et al.: Graphene flakes at the SiO2/organic-semiconductor interface for high-mobility field-effect transistors. Org. Electron. 27, 221–226 (2015)

    Article  Google Scholar 

  6. Li, X., et al.: In-situ polymerization of polyaniline on the surface of graphene oxide for high electrochemical capacitance. Thin Solid Films 584, 348–352 (2015)

    Article  Google Scholar 

  7. Ali, M.E.A., et al.: Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 386, 67–76 (2016)

    Article  Google Scholar 

  8. Jiang, D.-E., Cooper, V.R., Dai, S.: Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9(12), 4019–4024 (2009)

    Article  Google Scholar 

  9. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  10. Randall, J.F.: Designing Indoor Solar Products—Photovoltaic Technologies for AES. Wiley, New York (2005)

    Book  Google Scholar 

  11. Cossutta, M.: Life cycle analysis of graphene in a supercapacitor application. Doctoral dissertation, University of Nottingham (2016)

    Google Scholar 

  12. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  Google Scholar 

  13. Moser, J., Barreiro, A., Bachtold, A.: Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007)

    Article  Google Scholar 

  14. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  Google Scholar 

  15. Yu, P., Lowe, S.E., Simon, G.P., Zhong, Y.L.: Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. (2015). https://doi.org/10.1016/j.cocis.2015.10.007

    Article  Google Scholar 

  16. Pierson, H.O.: Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications (1993)

    Google Scholar 

  17. Müller, A., Kauranen, P., Von Ganski, A., Hell, B.: Injection moulding of graphite composite bipolar plates. J. Power Sour. 154(2), 467–471 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.096

    Article  Google Scholar 

  18. Thinkstep Gabi database, reference year (2017)

    Google Scholar 

  19. Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Shvets, I.V.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011)

    Article  Google Scholar 

  20. Morales, G.M., Schifani, P., Ellis, G., Ballesteros, C., Martínez, G., Barbero, C., et al.: Highquality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon 49, 2809–2816 (2011)

    Article  Google Scholar 

  21. Zaier, M., Vidal, L., Hajjar-Garreau, S., Balan, L.: Generating highly reflective and conductive metal layers through a light-assisted synthesis and assembling of silver nanoparticles in a polymer matrix. Sci. Rep. 7, 12410 (2017). https://doi.org/10.1038/s41598-017-12617-8

    Article  Google Scholar 

  22. Pilditch, R.L., Lizardi, I., Nelson, B.C., Johnson, M.M.: Skin-safe conductive ink and method for application on the body. U.S. Patent Application No. 13/147,690 (2012)

    Google Scholar 

  23. Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H.-M.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424 (2011). Retrieved from http://dx.doi.org/10.1038/nmat3001

    Article  Google Scholar 

  24. Chen, W., Li, S., Chen, C., Yan, L.: Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 23, 5679–5683 (2011). https://doi.org/10.1002/adma.201102838

    Article  Google Scholar 

  25. Grisales, C., Herrera, N., Fajardo, F.: Preparation of graphite conductive paint and its application to the construction of RC circuits on paper. Phys. Educ. 51(5) (2016). https://doi.org/10.1088/0031-9120/51/5/055011

    Article  Google Scholar 

  26. Murray-Smith, R.: Making Inks and Paints (2014) www.youtube.com/watch?v=ot9gz-bAIss. Accessed 4/07/2018

  27. Parvez, K., Wu, Z.S., Li, R., Liu, X., Graf, R., Feng, X., Müllen, K.: Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014). https://doi.org/10.1021/ja5017156

    Article  Google Scholar 

  28. Su, C.Y., Lu, A.Y., Xu, Y., Chen, F.R., Khlobystov, A.N., Li, L.J.: High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3), 2332–2339 (2011). https://doi.org/10.1021/nn200025p

    Article  Google Scholar 

  29. Monopoli, M.P., Bombelli, F.B., Dawson, K.A.: Nanobiotechnology: nanoparticle coronas take shape. Nat. Nanotechnol. 6(1), 11 (2011)

    Article  Google Scholar 

  30. Krug, H.F., Wick, P.: Nanotoxicology: an interdisciplinary challenge. Angew. Chem. Int. Ed. 50(6), 1260–1278 (2011)

    Article  Google Scholar 

  31. Sanchez, V.C., Jachak, A., Hurt, R.H., Kane, A.B.: Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25(1), 15–34 (2011)

    Article  Google Scholar 

  32. Feng, L., Liu, Z.: Graphene in biomedicine: opportunities and challenges. Nanomedicine 6(2), 317–324 (2011)

    Article  Google Scholar 

  33. Bussy, C., Ali-Boucetta, H., Kostarelos, K.: Safety considerations for graphene: lessons learnt from carbon nanotubes. Acc. Chem. Res. 46(3), 692–701 (2012)

    Article  Google Scholar 

  34. Jastrzębska, A.M., Kurtycz, P., Olszyna, A.R.: Recent advances in graphene family materials toxicity investigations. J. Nanopart. Res. 14(12), 1320 (2012)

    Article  Google Scholar 

  35. Hu, X., Zhou, Q.: Health and ecosystem risks of graphene. Chem. Rev. 113(5), 3815–3835 (2013)

    Article  Google Scholar 

  36. Bianco, A.: Graphene: safe or toxic? The two faces of the medal. Angew. Chem. Int. Ed. 52(19), 4986–4997 (2013)

    Article  Google Scholar 

  37. CES EduPack database reference year 2017

    Google Scholar 

  38. Wang, J., et al.: High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte (2011)

    Google Scholar 

  39. Adeniran, J.A., Yusuf, R.O., Adetoro, M.A.: Life cycle engineering case study: Sulphuric acid production. J. Eng. Tech. Manage. (JET) 8(2) (2017)

    Google Scholar 

  40. Capello, C., Fischer, U., Hungerbühler, K.: What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 9(9), 927–934 (2007)

    Article  Google Scholar 

  41. Zhamu, A., Jang, B.Z.: Mass Production of Pristine Nano Graphene Materials, US8226801B2. Nanotek Instruments Inc., United States (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Pagone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ampah, A.D., Pagone, E., Salonitis, K. (2019). Life Cycle Assessment of Graphene as Heating Element. In: Ball, P., Huaccho Huatuco, L., Howlett, R., Setchi, R. (eds) Sustainable Design and Manufacturing 2019. KES-SDM 2019. Smart Innovation, Systems and Technologies, vol 155. Springer, Singapore. https://doi.org/10.1007/978-981-13-9271-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9271-9_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9270-2

  • Online ISBN: 978-981-13-9271-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics