Skip to main content

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 154))

  • 903 Accesses

Abstract

In the field of humanoid robotics, a rapidly increasing number of biologically based constructions and algorithms can be observed to go operational. However, usually they are discussed as an individual and isolated component. The importance of the component collaboration is therefore widely missed. Hence, this paper presents the main biological reasonings throughout the whole development process of the compliant robotic leg Carl as a whole. It is shown how the design decisions of the individual components are related to each other and why this is mandatory in order to achieve a high-performance result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bigland, B., Lippold, O.: The relation between force, velocity and integrated electrical activity in human muscles. J. Physiol. 123(1), 214–224 (1954)

    Article  Google Scholar 

  2. Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Physiol. 14(11), 793–801 (1981)

    Google Scholar 

  3. Englsberger, J., Ott, C., Albu-Schffer, A.: Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot. 31(2), 355–368 (2015). https://doi.org/10.1109/TRO.2015.2405592

    Article  Google Scholar 

  4. Franklin, D.W., Wolpert, D.M.: Computational mechanisms of sensorimotor control. Neuron 72(3), 425–442 (2011). https://doi.org/10.1016/j.neuron.2011.10.006, http://www.sciencedirect.com/science/article/pii/S0896627311008919

    Article  Google Scholar 

  5. Grizzle, J.W., Chevallereau, C., Sinnet, R.W., Ames, A.D.: Models, feedback control, and open problems of 3d bipedal robotic walking. Automatica 50(8), 1955–1988 (2014)

    Article  MathSciNet  Google Scholar 

  6. Hill, A.V.: The heart of shortening and dynamic constants of muscles. Proc. R. Soc. Lond. B: Biol. Sci. 126(843), 136–195 (1938)

    Article  Google Scholar 

  7. Jacobs, R., Bobbert, M.F., van Ingen Schenau, G.J.: Mechanical output from individual muscles during explosive leg extensions: the role of biarticular muscles. J. Biomech. 29(4), 513–523 (1996)

    Article  Google Scholar 

  8. Liu, Q., Zhao, J., Berns, K.: Dynamically stepping over large obstacle utilizing pso optimization in the b4lc system. In: Advances in Cooperative Robotics: Proceedings of the 19th International Conference on Clawar 2016. p. 428 (September 12-14 2016)

    Chapter  Google Scholar 

  9. Liu, Q., Zhao, J., Schütz, S., Berns, K.: Adaptive motor patterns and reflexes for bipedal locomotion on rough terrain. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015)

    Google Scholar 

  10. Luksch, T.: Human-like control of dynamically walking bipedal robots. RRLab Dissertations, Verlag Dr. Hut (2010)

    Google Scholar 

  11. Nejadfard, A., Schütz, S., Vonwirth, P., Mianowski, K., Berns, K.: Coordination of the biarticular actuators based on instant power in an explosive jump experiment. In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (July 9-12 2018)

    Google Scholar 

  12. Nejadfard, A., Schütz, S., Vonwirth, P., Mianowski, K., Karsten, B.: Moment arm analysis of the biarticular actuators in compliant robotic leg carl. In: Conference on Biomimetic and Biohybrid Systems. pp. 348–360. Springer, Springer International Publishing (July 16-19 2018)

    Google Scholar 

  13. Oh, S., Salvucci, V., Kimura, Y., Hori, Y.: Mathematical and experimental verification of efficient force transmission by biarticular muscle actuator. In: Proceeding in World Congress of the International Federation of Automatic Control (IFAC). pp. 13516–13521 (2011)

    Article  Google Scholar 

  14. Orekhov, V.L., Knabe, C.S., Hopkins, M.A., Hong, D.W.: An unlumped model for linear series elastic actuators with ball screw drives. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 2224–2230. IEEE (2015)

    Google Scholar 

  15. Overduin, S.A., d’Avella, A., Roh, J., Carmena, J.M., Bizzi, E.: Representation of muscle synergies in the primate brain. J. Neurosci. 35(37), 12615–12624 (2015)

    Article  Google Scholar 

  16. Paine, N.A.: High-performance series elastic actuation. Ph.D. thesis, The University of Texas, Austin (August 2014), https://repositories.lib.utexas.edu/handle/2152/26938

  17. Rana, M., Yani, M.S., Asavasopon, S., Fisher, B.E., Kutch, J.J.: Brain connectivity associated with muscle synergies in humans. J. Neurosci. 35(44), 14708–14716 (2015)

    Article  Google Scholar 

  18. Reher, J., Cousineau, E.A., Hereid, A., Hubicki, C.M., Ames, A.D.: Realizing dynamic and efficient bipedal locomotion on the humanoid robot durus. In: 2016 IEEE International Conference on Robotics and Automation. pp. 1794–1801 (May 2016). https://doi.org/10.1109/ICRA.2016.7487325

  19. Robinson, D.W.: Design and analysis of series elasticity in closed-loop actuator force control. Ph.D. thesis, Massachusetts Institute of Technology (2000)

    Google Scholar 

  20. Schütz, S., Mianowski, K., Kotting, C., Nejadfard, A., Reichardt, M., Berns, K.: Rrlab sea – a highly integrated compliant actuator with minimised reflected inertia. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). pp. 252–257. IEEE (2016)

    Google Scholar 

  21. Schütz, S., Nejadfard, A., Mianowski, K., Vonwirth, P., Berns, K.: Carl – a compliant robotic leg featuring mono- and biarticular actuation. In: IEEE-RAS International Conference on Humanoid Robots (2017)

    Google Scholar 

  22. Song, S., Geyer, H.: A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. 593(16), 3493–3511 (2015). https://doi.org/10.1113/JP270228

    Article  Google Scholar 

  23. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 4th edn. Wiley (2009)

    Google Scholar 

  24. Zajac, F.E.: Muscle and tendon properties models scaling and application to biomechanics and motor. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)

    Google Scholar 

  25. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking: Part i: introduction to concepts, power transfer, dynamics and simulations. Gait & posture 16(3), 215–232 (2002)

    Article  Google Scholar 

  26. Zhao, J.: Advanced walking skills for bipedal locomotion. RRLab Dissertations, Verlag Dr. Hut, Munich, Germany, 1 edn. (November 2016), http://www.dr.hut-verlag.de/978-3-8439-2827-4.html ISBN-13:978-3-8439-2827-4

  27. Zhao, J., Liu, Q., Schütz, S., Berns, K.: Experimental verification of an approach for disturbance estimation and compensation on a simulated biped during perturbed stance. In: IEEE International Conference on Robotics and Automation (ICRA 2014). Hongkong, China (2014)

    Google Scholar 

  28. Zhao, J., Liu, Q., Schütz, S., Berns, K.: A bio-inspired behavior based bipedal locomotion control – B4LC method for bipedal upslope walking. In: 18th International Conference on Climbing and Walking Robots (CLAWAR) (September 6-9 2015)

    Google Scholar 

  29. Zhao, J., Schütz, S., Berns, K.: Biologically motivated push recovery strategies for a 3D bipedal robot walking in complex environments. In: IEEE - International Conference on Robotics and Biomimetics (Robio 2013). Shenzhen, China (December 12-14 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Vonwirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vonwirth, P., Nejadfard, A., Berns, K. (2020). Biologically Inspired Bipedal Locomotion—From Control Concept to Human-Like Biped. In: Ronzhin, A., Shishlakov, V. (eds) Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”. Smart Innovation, Systems and Technologies, vol 154. Springer, Singapore. https://doi.org/10.1007/978-981-13-9267-2_1

Download citation

Publish with us

Policies and ethics