Skip to main content

Detection of Breast Cancer Using Fusion of MLO and CC View Features Through a Hybrid Technique Based on Binary Firefly Algorithm and Optimum-Path Forest Classifier

  • Chapter
  • First Online:
Applied Nature-Inspired Computing: Algorithms and Case Studies

Part of the book series: Springer Tracts in Nature-Inspired Computing ((STNIC))

Abstract

Breast cancer is a leading killer disease among women of the new era. As per the GLOBOCAN project, the breast cancer incidences showed an increase from 22.2 to 27% globally from 2008 to 2012. Many times, no obvious symptoms were identified in breast cancer patients. Accurate detection of breast cancer at the earliest stage is very much essential to reduce mortality. Mammography has been used as a gold standard for over 40 years in diagnosing breast diseases. Computer-Aided Detection (CAD) systems have been developed to avoid the subjective analysis of screening mammograms made by radiologist. Craniocaudal (CC) view and Mediolateral Oblique (MLO) view are commonly used for breast cancer detection and diagnosis. Detection accuracy of breast cancers can be improved as the number of views is increased. This work is focused to improve the detection performance by fusing Local Binary Pattern (LBP) features extracted from MLO and CC view mammograms through a hybrid feature fusion technique based on Firefly algorithm and Optimum-Path Forest classifier. Seven performance metrics such as accuracy, sensitivity, specificity, precision, F1 score, Mathews Correlation Coefficient (MCC) and Balanced Classification Rate (BCR) were used to analyse the detection performance. The proposed work shows better performance when compared to existing work in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008 GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917.

    Article  Google Scholar 

  2. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., & Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5).

    Google Scholar 

  3. Takiar, R., Nadayil, D., & Nandakumar, A. (2010). Projections of number of cancer cases in India (2010–2020) by cancer groups. Asian Pacific Journal of Cancer Prevention, 11(4), 1045–1049.

    Google Scholar 

  4. De Souza Jacomini, R., do Nascimento, M. Z., Dantas, R. D., & Ramos, R. P. (2012). Comparison of PCA and ANOVA for information selection of CC and MLO views in classification of mammograms. In Proceedings of international conference on intelligent data engineering and automated learning (pp. 117–126). Berlin: Springer.

    Google Scholar 

  5. Jalalian, A., Mashohor, S., Mahmud, R., Karasfi, B., Saripan, M. I. B., & Ramli, A. R. B. (2017). Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection. EXCLI Journal, 16, 113.

    Google Scholar 

  6. Hossain, S., & Serikawa, S. (2012). Features for texture analysis. In Proceedings of IEEE SICE annual conference (SICE) (pp. 1739–1744).

    Google Scholar 

  7. Tourassi, G. D. (1999). Journey toward computer-aided diagnosis: role of image texture analysis. Radiology, 213(2), 317–320.

    Article  Google Scholar 

  8. Karahaliou, A. N., Arikidis, N. S., Skiadopoulos, S. G., Panayiotakis, G. S., & Costaridou, L. I. (2012). Computerized image analysis of mammographic micro calcifications: Diagnosis and prognosis In Mammography-recent advances. InTech.

    Google Scholar 

  9. Bassett, L. W., Bunnell, D. H., Jahanshahi, R., Gold, R. H., Arndt, R. D., & Linsman, J. (1987). Breast cancer detection: One versus two views. Radiology, 165(1), 95–97.

    Article  Google Scholar 

  10. Chakraborty, S., Dey, N., Samanta, S., Ashour, A. S., & Balas, V. E. (2016). Firefly algorithm for optimized nonrigid demons registration. In Bio-inspired computation and applications in image processing (pp. 221–237). Amsterdam: Academic.

    Google Scholar 

  11. Tang, R., Fong, S., & Dey, N. (2018). Metaheuristics and chaos theory. In Chaos theory. InTech.

    Google Scholar 

  12. Zhang, L., Liu, L., Yang, X. S., & Dai, Y. (2016). A novel hybrid firefly algorithm for global optimization. PloS one, 11(9), e0163230. Yang, X. S. (2008). Nature-inspired metaheuristic algorithms. Luniver Press. ISBN 1-905986-10-6.

    Google Scholar 

  13. Pal, S. K., Rai, C. S., & Singh, A. P. (2012). Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems. International Journal of Intelligent Systems and Applications, 4, 50.

    Article  Google Scholar 

  14. Singh, G. P., & Singh, A. (2014). Comparative study of Krill Herd, firefly and cuckoo search algorithms for unimodal and multimodal optimization. International Journal of Intelligent Systems and Applications, 6, 35.

    Article  Google Scholar 

  15. Nakamura, R. Y., Pereira, L. A., Costa, K. A., Rodrigues, D., Papa, J. P., & Yang, X. S. (2012, August). BBA: A binary bat algorithm for feature selection. In 2012 25th SIBGRAPI conference on graphics, patterns and images (pp. 291–297). IEEE.

    Google Scholar 

  16. Papa, J. P., Falcao, A. X., & Suzuki, C. T. (2009). Supervised pattern classification based on optimum path forest. International Journal of Imaging Systems and Technology, 19(2), 120–131.

    Article  Google Scholar 

  17. Young, K. C., Wallis, M. G., Blanks, R. G., & Moss, S. M. (1997). Influence of number of views and mammographic film density on the detection of invasive cancers: Results from the NHS breast screening programme. The British Journal of Radiology, 70(833), 482–488.

    Article  Google Scholar 

  18. Altrichter, M., Ludányi, Z., & Horváth, G. (2005). Joint analysis of multiple mammographic views in CAD systems for breast cancer detection. In Scandinavian conference on image analysis (pp. 760–769). Berlin: Springer.

    Google Scholar 

  19. Paquerault, S., Petrick, N., Chan, H. P., Sahiner, B., & Helvie, M. A. (2002). Improvement of computerized mass detection on mammograms: Fusion of two-view information. Medical Physics, 29(2), 238–247.

    Article  Google Scholar 

  20. Kim, S. J., Moon, W. K., Cho, N., Cha, J. H., Kim, S. M., & Im, J. G. (2006). Computer-aided detection in digital Mammography: Comparison of craniocaudal, mediolateral oblique, and mediolateral views. Radiology, 241(3), 695–701.

    Article  Google Scholar 

  21. Gupta, S., Zhang, D., Sampat, M. P., & Markey, M. K. (2006). Combining texture features from the MLO and CC views for mammographic CADx. Progress in Biomedical Optics and Imaging, 7(3).

    Google Scholar 

  22. Magro, R., Cascio, D., Fauci, F., Presti, L. L., Raso, G., Ienzi., R., & Sorce, S. (2008). A method to reduce the FP/imm number through CC and MLO views comparison in mammographic images. In Proceedings of IEEE symposium conference on nuclear science record (pp. 4364–4367).

    Google Scholar 

  23. Velikova, M., Samulski, M., Lucas, P. J., & Karssemeijer, N. (2009). Improved mammographic CAD performance using multi-view information: A Bayesian network framework. Physics in Medicine and Biology, 54(5), 1131–1147.

    Article  Google Scholar 

  24. Zhang, S., Chen, Z., Gu, S., Qiu, X., Qu, Q., & Wang, Z. (2013). Breast tumour detection in double views Mammography based on simple bias. In Proceedings of 2013 IEEE international conference on medical imaging physics and engineering (ICMIPE) (pp. 240–244).

    Google Scholar 

  25. Liu, X., & Zeng, Z. (2015). A new automatic mass detection method for breast cancer with false positive reduction. Neurocomputing, 152, 388–402.

    Article  Google Scholar 

  26. Sun, L., Li, L., Xu, W., Liu, W., Zhang, J., & Shao, G. (2010). A novel classification scheme for breast masses based on multi-view information fusion. In Proceedings of 4th IEEE international conference on bioinformatics and biomedical engineering (iCBBE) (pp. 1–4).

    Google Scholar 

  27. Kim, D. H., Choi, J. Y., & Ro, Y. M. (2013). Boosting framework for mammographic mass classification with combination of CC and MLO view information. In SPIE medical imaging, international society for optics and photonics (pp. 86701V–86701V).

    Google Scholar 

  28. Sasikala, S., Ezhilarasi, M., & Rasheedha, A. (2015). Breast cancer diagnosis using texture features from both MLO & CC view mammograms. International Journal of Applied Engineering Research, 10(37), 27934–27939.

    Google Scholar 

  29. Sasikala, S., & Ezhilarasi, M. (2018). Comparative analysis of serial and parallel fusion on texture features for improved breast cancer diagnosis. Current Medical Imaging Reviews, 14, 957–968.

    Article  Google Scholar 

  30. Virmani, J. (2016). Comparison of CAD systems for three class breast tissue density classification using mammographic images. In Medical imaging in clinical applications (pp. 107–130). Cham: Springer.

    Google Scholar 

  31. Bhattacherjee, A., Roy, S., Paul, S., Roy, P., Kausar, N., & Dey, N. (2016). Classification approach for breast cancer detection using back propagation neural network: a study. In Biomedical image analysis and mining techniques for improved health outcomes (pp. 210–221). IGI Global.

    Google Scholar 

  32. Cheriguene, S., Azizi, N., Zemmal, N., Dey, N., Djellali, H., & Farah, N. (2016). Optimized tumor breast cancer classification using combining random subspace and static classifiers selection paradigms. In Applications of intelligent optimization in biology and medicine (pp. 289–307). Cham: Springer.

    Google Scholar 

  33. Virmani, J., Dey, N., & Kumar, V. (2016). PCA-PNN and PCA-SVM based CAD systems for breast density classification. In Applications of intelligent optimization in biology and medicine (pp. 159–180). Cham: Springer.

    Google Scholar 

  34. Zemmal, N., Azizi, N., Dey, N., & Sellami, M. (2016). Adaptive semi supervised support vector machine semi supervised learning with features cooperation for breast cancer classification. Journal of Medical Imaging and Health Informatics, 6(1), 53–62.

    Article  Google Scholar 

  35. Sasikala, S., Bharathi, M., Ezhilarasi, M., Ramasubba Reddy, M., Arunkumar, S. (2018). Fusion of MLO and CC view binary patterns to improve the performance of breast cancer diagnosis. Current Medical Imaging Reviews, 14, 651–658.

    Article  Google Scholar 

  36. Blanks, R. G., Wallis, M. G., & Given-Wilson, R. M. (1999). Observer variability in cancer detection during routine repeat (incident) mammographic screening in a study of two versus one view Mammography. Journal of Medical Screening, 6(3), 152–158.

    Google Scholar 

  37. Sahiner, B., Chan, H. P., Hadjiiski, L. M., Helvie, M. A., Paramagul, C., Ge, J., et al. (2006). Joint two‐view information for computerized detection of micro calcifications on Mammograms. Medical Physics, 33(7), 2574–2585.

    Article  Google Scholar 

  38. Dantas, R. D., do Nascimento, M. Z., de Souza Jacomini, R., Pereira, D. C., & Ramos, R. P. (2012). Fusion of two-view information: SVD based modeling for computerized classification of breast lesions on Mammograms. In Mammography-recent advances. InTech., pp. 261–278.

    Google Scholar 

  39. Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, P., Moore, R., Chang, K., et al. (1998). Current status of the digital database for screening Mammography. Digital Mammography (pp. 457–460). Netherlands: Springer.

    Chapter  Google Scholar 

  40. Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., & Cardoso, J. S. (2012). Inbreast: Toward a full-field digital mammographic database. Academic Radiology, 19(2), 236–248.

    Article  Google Scholar 

  41. Li, B. N., Chui, C. K., Chang, S., & Ong, S. H. (2011). Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Computers in Biology and Medicine, 41(1), 1–10.

    Article  Google Scholar 

  42. Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59.

    Article  Google Scholar 

  43. Wang, Z., Qu, Q., Yu, G., & Kang, Y. (2016). Breast tumor detection in double views mammography based on extreme learning machine. Neural Computing and Applications, 27(1), 227–240.

    Article  Google Scholar 

  44. Mangai, U. G., Samanta, S., Das, S., & Chowdhury, P. R. (2010). A survey of decision fusion and feature fusion strategies for pattern classification. IETE Technical Review, 27(4), 293–307.

    Article  Google Scholar 

  45. Diniz, W. F., Fremont, V., Fantoni, I., & Nóbrega, E. G. (2015). Evaluation of optimum path forest classifier for pedestrian detection. In Proceedings IEEE international conference on robotics and biomimetics (ROBIO) (pp. 899–904).

    Google Scholar 

  46. Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In Proceedings international symposium on stochastic algorithms (pp. 169–178). Berlin: Springer.

    Chapter  Google Scholar 

  47. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth ACM annual workshop on computational learning theory (pp. 144–152).

    Google Scholar 

  48. Sasikala, S., & Ezhilarasi, M. (2016). Combination of mammographic texture feature descriptors for improved breast cancer diagnosis. Asian Journal of Information Technology, 15(20), 4054–4062.

    Google Scholar 

  49. Sasikala, S., & Ezhilarasi, M. (2018). Fusion of k-Gabor features from medio-lateral-oblique and craniocaudal view mammograms for improved breast cancer diagnosis. Journal of Cancer Research and Therapeutics, 14(5), 1036.

    Article  Google Scholar 

  50. Sasikala, S., Bharathi, M., Ezhilarasi, M., Ramasubba Reddy, M., & Arunkumar, S. (2018). Fusion of MLO and CC view binary patterns to improve the performance of breast cancer diagnosis. Current Medical Imaging Reviews, 14(4), 651–658.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge TM Deserni, Deptartment of Medical Informatics and RWTH Achen, Germany for providing the dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sasikala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasikala, S., Ezhilarasi, M., Arun Kumar, S. (2020). Detection of Breast Cancer Using Fusion of MLO and CC View Features Through a Hybrid Technique Based on Binary Firefly Algorithm and Optimum-Path Forest Classifier. In: Dey, N., Ashour, A., Bhattacharyya, S. (eds) Applied Nature-Inspired Computing: Algorithms and Case Studies. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-13-9263-4_2

Download citation

Publish with us

Policies and ethics