Skip to main content

Parallel–Series System Optimization by Weighting Sum Methods and Nature-Inspired Computing

  • Chapter
  • First Online:
Applied Nature-Inspired Computing: Algorithms and Case Studies

Abstract

Optimization of systems at the design stage is a key element for competitive industrial installations and plants. The subsystems of a system may be connected in various structural configurations such as in series, parallel–series, and bridge networks. The design of such systems involves challenges of reliability, cost, availability, weight, and volume. Often, in the literature, this optimization problem is addressed as a single-objective one. This chapter investigates the design of a parallel–series system by considering both the system cost and availability as objectives. The multi-objective optimization problem is converted into a single-objective problem using two weighed sum methods. Numerical results of five nature-inspired computing techniques are compared in order to highlight their performances in solving this problem. These are the genetic algorithm (GA), differential evolution (DE), particle swarm optimization (PSO), the flower pollination algorithm (FPA), and the plant propagation algorithm (PPA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dey, N. (2018). Advancements in applied metaheuristic computing. Hershey, USA: IGI Global.

    Book  Google Scholar 

  2. Maji, K. B., Kar, R., Mandal, D., et al. (2018). Design of low-voltage CMOS Op-Amp using evolutionary optimization techniques. In Advances in computer communication and computational sciences (pp. 257–267). Singapore: Springer.

    Google Scholar 

  3. Agrawal, S. K., Singh, B. P., Kumar, R., & Dey, N. (2019). Machine learning for medical diagnosis: A neural network classifier optimized via the directed bee colony optimization algorithm. In U-Healthcare monitoring system (pp. 197–215). Elsevier.

    Google Scholar 

  4. Bekdas, G., Nigdeli, S. M., Kayabekir, A. E., & Yang, X. S. (2019). Optimization in civil engineering and metaheuristic algorithms: A review of state-of-the-art developments. In Computational intelligence, optimization and inverse problems with applications in engineering (pp. 111–137). Springer.

    Google Scholar 

  5. Zeng, D., Peng, J., Fong, S., et al. (2018). Medical data mining in sentiment analysis based on optimized swarm search feature selection. Australasian Physical and Engineering Sciences in Medicine, 41, 1087–1100.

    Article  Google Scholar 

  6. Mellal, M. A., Adjerid, S., Benazzouz, D., et al. (2013). Obsolescence optimization of electronic and mechatronic components by considering dependability and energy consumption. Journal of Central South University, 20, 1221–1225. https://doi.org/10.1007/s11771-013-1605-9.

    Article  Google Scholar 

  7. Mellal, M. A., Adjerid, S., Williams, E. J., & Benazzouz, D. (2012). Optimal replacement policy for obsolete components using cuckoo optimization algorithm based-approach: Dependability context. Journal of Scientific & Industrial Research (India), 71, 715–721.

    Google Scholar 

  8. Mellal, M. A., Adjerid, S., & Williams, E. J. (2013). Optimal selection of obsolete tools in manufacturing systems using cuckoo optimization algorithm. Chemical Engineering Transactions, 33, 355–360. https://doi.org/10.3303/CET1333060.

    Article  Google Scholar 

  9. Mellal, M. A., Adjerid, S., & Williams, E. J. (2017). Replacement optimization of industrial components subject to technological obsolescence using artificial intelligence. In 2017 6th International Conference on Systems and Control, ICSC 2017. https://doi.org/10.1109/icosc.2017.7958637.

  10. Mellal, M. A., Adjerid, S., Benazzouz, D., et al. (2013). Optimal policy for the replacement of industrial systems subject to technological obsolescence—Using genetic algorithm. Acta Polytechnica Hungarica, 10, 197–208.

    Google Scholar 

  11. Mellal, M. A., & Williams, E. J. (2015). Cuckoo optimization algorithm with penalty function for combined heat and power economic dispatch problem. Energy, 93, 1711–1718. https://doi.org/10.1016/j.energy.2015.10.006.

    Article  Google Scholar 

  12. Mellal, M. A., & Williams, E. J. (2016). Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopoe heuristic. Journal of Intelligent Manufacturing, 27, 927–942.

    Article  Google Scholar 

  13. Mellal, M. A., & Williams, E. J. (2016). Total production time minimization of a multi-pass milling process via cuckoo optimization algorithm. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-016-8498-3.

    Article  Google Scholar 

  14. Camci, E., Kripalani, D. R., Ma, L., et al. (2018). An aerial robot for rice farm quality inspection with type-2 fuzzy neural networks tuned by particle swarm optimization-sliding mode control hybrid algorithm. Swarm and Evolutionary Computation, 41, 1–8. https://doi.org/10.1016/j.swevo.2017.10.003.

    Article  Google Scholar 

  15. Li, Z., Dey, N., Ashour, A. S., & Tang, Q. (2018). Discrete cuckoo search algorithms for two-sided robotic assembly line balancing problem. Neural Computing and Applications, 30, 2685–2696. https://doi.org/10.1007/s00521-017-2855-5.

    Article  Google Scholar 

  16. Baris, Y., & Ernesto, M. (2016). Supply chain network design using an enhanced hybrid swarm-based optimization algorithm. In P. Vasant & G.-W. Weber (Eds.), Handbook of research on modern optimization algorithms and applications in engineering and economics (pp. 95–112). IGI Global.

    Google Scholar 

  17. Venkata Dasu, M., VeeraNarayana Reddy, P., & Chandra Mohan Reddy, S. (2018). A proposal on application of nature inspired optimization techniques on hyper spectral images. In Advances in intelligent systems and computing (pp. 309–318).

    Google Scholar 

  18. Jagatheesan, K., Anand, B., Samanta, S., et al. (2017). Particle swarm optimisation-based parameters optimisation of PID controller for load frequency control of multi-area reheat thermal power systems. International Journal of Advanced Intelligence Paradigms, 9, 464. https://doi.org/10.1504/IJAIP.2017.088143.

    Article  Google Scholar 

  19. Jagatheesan, K., Anand, B., Dey, N., et al. (2016). A design of PI controller using stochastic particle swarm optimization in load frequency control of thermal power systems. In Proceedings 2015 4th International Conference on Information Science and Industrial Applications, ISI 2015 (pp. 25–31).

    Google Scholar 

  20. Yang, X. S. (2011). Review of metaheuristics and generalized evolutionary walk algorithm. International Journal of Bio-Inspired Computation, 3, 77–84.

    Article  Google Scholar 

  21. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press. https://doi.org/10.1137/1018105.

    Article  MathSciNet  Google Scholar 

  22. Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). The immune system, adaptation, and machine learning. Physica D: Nonlinear Phenomena, 22, 187–204. https://doi.org/10.1016/0167-2789(86)90240-X.

    Article  MathSciNet  Google Scholar 

  23. Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy.

    Google Scholar 

  24. Storn, R., & Price, K. (1995). Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces. Berkeley, CA, USA.

    Google Scholar 

  25. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings IEEE International Conference on Neural Networks (Vol. 4, pp. 1942–1948) (1995). https://doi.org/10.1109/icnn.1995.488968.

  26. Pham, D. T., Ghanba, A., Rzadeh, D. T., et al. (2005). The bees algorithm—A novel tool for complex optimisation problems. UK.

    Google Scholar 

  27. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Turkey.

    Google Scholar 

  28. Yang, X. S. (2008). Nature-inspired metaheuristic algorithms. UK: Luniver Press.

    Google Scholar 

  29. Yang, X.-S., & Deb, S. (2009). Cuckoo search via Levy Flights. In 2009 World Congress on Nature & Biologically Inspired Computing (pp. 210–214). https://doi.org/10.1109/nabic.2009.5393690.

  30. Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11, 5508–5518.

    Article  Google Scholar 

  31. Mellal, M. A., & Williams, E. J. (2017). The cuckoo optimization algorithm and its applications. In Handbook of neural computation. https://doi.org/10.1016/b978-0-12-811318-9.00014-4.

    Chapter  Google Scholar 

  32. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (pp. 65–74). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-12538-6_6.

    Chapter  Google Scholar 

  33. Yang, X.-S. (2012). Flower pollination algorithm for global optimization. In International Conference on Unconventional Computing and Natural Computation (Vol. 7445, pp. 240–249). https://doi.org/10.1007/978-3-642-32894-7_27.

    Chapter  Google Scholar 

  34. Salhi, A., & Fraga, E. S. (2011). Nature-inspired optimisation approaches and the new plant propagation algorithm. In International Conference on Numerical Analysis and Optimization.

    Google Scholar 

  35. Chebouba, B. N., Mellal, M. A., & Adjerid, S. (2018). Three computational intelligence methods for system reliability. In 2nd International Workshop Signal Processing Applied to Rotating Machinery Diagnostics.

    Google Scholar 

  36. Mellal, M. A., & Zio, E. (2017). System reliability-redundancy allocation by evolutionary computation. In 2nd International Conference on System Reliability and Safety. https://doi.org/10.1109/icsrs.2017.8272790.

  37. Mellal, M. A., & Zio, E. (2016). A penalty guided stochastic fractal search approach for system reliability optimization. Reliability Engineering & System, 152, 213–227.

    Article  Google Scholar 

  38. Valia, E. (2014). Solving reliability optimization problems by cuckoo search. In Cuckoo search firefly algorithm—Theory and applications (pp. 195–215).

    Google Scholar 

  39. Kanagaraj, G., Ponnambalam, S. G., & Jawahar, N. (2013). A hybrid cuckoo search and genetic algorithm for reliability-redundancy allocation problems. Computer and Industrial Engineering, 66, 1115–1124. https://doi.org/10.1016/j.cie.2013.08.003.

    Article  Google Scholar 

  40. Chebouba, B. N., Mellal, M. A., & Adjerid, S. (2018). System design optimization under constraint of reliability. In International Conference on Advanced Concepts in Mechanical and Renewable Energy.

    Google Scholar 

  41. Mellal, M. A., & Williams, E. J. (2018). Large scale reliability-redundancy allocation optimization problem using three soft computing methods. In Modeling and simulation based analysis in reliability engineering (pp. 199–214). CRC Press, Francis & Taylor.

    Google Scholar 

  42. Liu, G. S. (2012). Availability optimization for repairable parallel-series system by applying Tabu-GA combination method. In 10th IEEE 10th International Conference on Industrial Informatics, Beijing, China (pp. 803–808).

    Google Scholar 

  43. Liu, G. S. (2013). Availability optimization for repairable n-stage standby system by applying Tabu-GA combination method. International Journal of Modeling and Optimization, 3, 245–250.

    Article  Google Scholar 

  44. Mellal, M. A., & Zio, E. (2018). Availability optimization of parallel-series system by evolutionary computation. In 3rd International Conference on System Reliability and Safety.

    Google Scholar 

  45. Giuggioli Busacca, P., Marseguerra, M., & Zio, E. (2001). Multiobjective optimization by genetic algorithms: Application to safety systems. Reliability Engineering & System, 72, 59–74.

    Article  Google Scholar 

  46. Chebouba, B. N., Mellal, M. A., & Adjerid, S. (2018). Multi-objective system reliability Optimization in a power plant. In 3rd International Conference on Electrical Sciences and Technologies in Maghreb.

    Google Scholar 

  47. Abouei Ardakan, M., & Rezvan, M. T. (2018). Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II. Reliability Engineering & System, 172, 225–238. https://doi.org/10.1016/j.ress.2017.12.019.

    Article  Google Scholar 

  48. Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System, 91, 992–1007. https://doi.org/10.1016/j.ress.2005.11.018.

    Article  Google Scholar 

  49. Rao, R. V., & Rai, D. P. (2017). Optimisation of welding processes using quasi-oppositional-based Jaya algorithm. Journal of Experimental & Theoretical Artificial Intelligence. https://doi.org/10.1080/0952813x.2017.1309692.

    Article  Google Scholar 

  50. Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to particle swarm optimization and ant colony optimization. In Introduction to genetic algorithms (pp. 403–424). Springer.

    Google Scholar 

  51. Zio, E., Golea, L. R., & Sansavini, G. (2012). Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm. Reliability Engineering & System, 103, 72–83. https://doi.org/10.1016/j.ress.2012.03.007.

    Article  Google Scholar 

  52. Zio, E., & Viadana, G. (2011). Optimization of the inspection intervals of a safety system in a nuclear power plant by multi-objective differential evolution (MODE). Reliability Engineering & System, 96, 1552–1563. https://doi.org/10.1016/j.ress.2011.06.010.

    Article  Google Scholar 

  53. Karaboga, N., & Cetinkaya, B. (2004). Performance comparison of genetic and differential evolution algorithms for digital FIR filter design. In Advances in information systems (pp. 482–488).

    Google Scholar 

  54. Mellal, M. A., & Williams, E. J. (2018). A survey on ant colony optimization, particle swarm optimization, and cuckoo algorithms. In Handbook of research on emergent applications of optimization algorithms.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Arezki Mellal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mellal, M.A., Salhi, A. (2020). Parallel–Series System Optimization by Weighting Sum Methods and Nature-Inspired Computing. In: Dey, N., Ashour, A., Bhattacharyya, S. (eds) Applied Nature-Inspired Computing: Algorithms and Case Studies. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-13-9263-4_10

Download citation

Publish with us

Policies and ethics