Skip to main content

Impact Assessment of Climate Change on Rice Yield Using a Crop Growth Model and Activities Toward Adaptation: Targeting Three Provinces in Indonesia

  • Chapter
  • First Online:
Adaptation to Climate Change in Agriculture

Abstract

In accordance with the Paris Agreement, the assessment of climate change impacts on rice productivity is expected at both the national and local (i.e., province or state) levels in Asian countries, to create and implement adaptation plans for climate change. However, there is limited information on the impact of climate change on local rice production in developing countries, especially at the local level. To this end, we aimed to clarify this impact on the yield of local rice in Indonesia in the next 25 years, using a crop growth model, MATCRO-Rice, in three provinces including North Sumatra, East Java, and Bali. Climate change was predicted to reduce the yield primarily because of increase in air temperature. Furthermore, the simulated yield reductions were different among the districts in each province, indicating the importance of regional adaptation priorities. We discussed several adaptation strategies with local stakeholders in each province from the viewpoints of feasibility and priority. Some strategies, such as change in cultivars to have high tolerance to high air temperature, which was ranked as being highly feasible and high priority, are expected to be future adaptation options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal PK, Mall RK (2002) Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Clim Chang 52:331–343

    Article  Google Scholar 

  • Babel MS, Agarwal A, Swain DK et al (2011) Evaluation of climate change impacts and adaptation measures for rice cultivation in Northeast Thailand. Clim Res 46:137–146

    Article  Google Scholar 

  • Bouman BAM, Kropff MJ, Tuong TP et al (2001) In: International Rice Research Institute, and Wageningen: Wageningen University and Research Centre (ed) ORYZA2000: modeling lowland Rice, Los Baños (Philippines)

    Google Scholar 

  • BPS (Badan Pusat Statistik) (2016) Food crops. https://www.bps.go.id/subject/53/tanaman-pangan.html#subjekViewTab3. Accessed 30 November 2018

  • Dlugokencky E, Tans P (2018) NOAA/ESRL. http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 30 November 2018

  • FAO (Food and Agriculture Organization of the United Nations) (2016) Global Map of Irrigation Areas (GMIA) 2013, AQUASTAT. http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm. Accessed 30 November 2018

  • FAO (Food and Agriculture Organization of the United Nations), IIASA (International Institute for Applied Systems Analysis), ISRIC (International Soil Reference and Information Centre), ISSCAS (Institute of Soil Science, Chinese Academy of Sciences), JRC (Joint Research Centre) (2012) Harmonized World Soil Database (version 1.2)

    Google Scholar 

  • Gomez-Garcia M, Ogawada D, Matsumura A et al (2017) Evaluation of the application of the ISI-MIP bias-correction method of future simulations of climate over Indonesia for the implementation of climate change adaptation plans. HESSS4 Tokyo, Japan

    Google Scholar 

  • Horie T (1987) A model for evaluating climatic productivity and water balance of irrigated rice and its application to Southeast Asia. Southeast Asian Stud 25:62–74

    Google Scholar 

  • IMoA (Indonesian Ministry of Agriculture) (2016) Rencana Strategis Kementerian Pertanian Tahun 2015–2019. http://sakip.pertanian.go.id/admin/file/Renstra%20Kementan%202015-2019%20(edisi%20revisi).pdf. Accessed 30 November 2018 (In Indonesian)

  • Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci USA 105:1425–1430

    Article  CAS  Google Scholar 

  • Kropff MJ, van Laar HH, Matthews RB (1994) ORYZAl: an ecophysiological model for irrigated rice production. In: SARP research proceedings, AB-DLO, Wageningen, The Netherlands

    Google Scholar 

  • Laborte AG, Gutierrez MA, Balanza JG et al (2017) RiceAtlas, a spatial database of global rice calendars and production. Sci Data 4:170074

    Article  Google Scholar 

  • Li T, Hasegawa T, Yin X et al (2015) Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob Chang Biol 21:1328–1341

    Article  CAS  Google Scholar 

  • Lu C, Tian H (2017) Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst Sci Data 9:181–192

    Article  Google Scholar 

  • Maclean JL (2013) Rice almanac: source book for the most important economic activity on earth. International Rice Research Institute

    Google Scholar 

  • Masutomi Y, Ono K, Mano M et al (2016a) A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v. 1)-part 1: model description. Geosci Model Dev 9:4133–4154

    Article  Google Scholar 

  • Masutomi Y, Ono K, Takimoto T et al (2016b) A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v. 1)-part 2: model validation. Geosci Model Dev 9:4155–4167

    Article  Google Scholar 

  • Matthews RB, Kropff MJ, Horie T et al (1997) Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agric Syst 54:399–425

    Article  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241

    Article  CAS  Google Scholar 

  • Naylor RL, Battisti DS, Vimont DJ et al (2007) Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proc Natl Acad Sci USA 104:7752–7757

    Article  CAS  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR et al (2014) Climate change 2014: synthesis report. In: Pachauri R, Meyer L (eds) Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental panel on climate change, IPCC, Geneva, Switzerland

    Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A et al (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Chang 14:53–67

    Article  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP et al (2007) Climate change 2007: impacts adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Peng S, Huang J, Sheehy JE et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975

    Article  CAS  Google Scholar 

  • Porter JR, Xie L, Challinor AJ et al. (2014) Food security and food production systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 485–533

    Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr et al (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411

    Article  Google Scholar 

  • Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–138

    Article  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 111:3268–3273

    Article  CAS  Google Scholar 

  • Sacks WJ, Deryng D, Foley JA et al (2010) Crop planting dates: an analysis of global patterns. Glob Ecol Biogeogr 19:607–620. https://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/index.php. Accessed 30 November 2018

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498

    Article  Google Scholar 

  • Tubiello FN, Amthor JS, Boote KJ et al (2007) Crop response to elevated CO2 and world food supply: a comment on “Food for Thought…” by Long et al., Science 312:1918–1921, 2006. Eur J Agron 26:215–223

    Google Scholar 

  • UNFCCC (United Nations Framework Convention on Climate Change) (2015) The Paris Agreement. http://unfccc.int/paris_agreement/items/9485.php. Accessed 30 November 2018

  • USDA (United States Department of Agriculture) (2010) Gain report. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Rice%20and%20Corn%20Update_Jakarta_Indonesia_4-23-2010.pdf. Accessed 30 November 2018

  • van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31

    Article  Google Scholar 

  • von Grebmer K, Bernstein J, Hossain N et al. (2017) 2017 Global hunger index: the inequalities of hunger. http://www.ifpri.org/cdmref/p15738coll2/id/131422/filename/131628.pdf. Accessed 30 November 2018

  • Weedon GP, Balsamo G, Bellouin N et al (2014) The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-interim reanalysis data. Water Resour Res 50:7505–7514

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Program on Development of Regional Climate Change Adaptation Plans in Indonesia, by the Ministry of the Environment of Japan, and by the Environment Research and Technology Development Fund (S-12) of the Environmental Restoration and Conservation Agency. This study was performed in collaboration with the Indonesian Ministry of National Development Planning (BAPPENAS; Badan Perencanaan Pembangunan Nasional). We are indebted to Dr. Keiichi Hayashi for providing us with experimental data, from studies conducted in IJCRP, which were funded by the Ministry of Agriculture, Forestry, and Fisheries of Japan, regarding tuning the crop growth model. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP. We also thank the climate modeling groups (listed in Table 5.1) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kinose, Y., Masutomi, Y. (2019). Impact Assessment of Climate Change on Rice Yield Using a Crop Growth Model and Activities Toward Adaptation: Targeting Three Provinces in Indonesia. In: Iizumi, T., Hirata, R., Matsuda, R. (eds) Adaptation to Climate Change in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-9235-1_5

Download citation

Publish with us

Policies and ethics