Skip to main content

New Approaches Combined with Environmental Control for Enhancing Heat-Tolerant Rice Breeding in Japan

  • Chapter
  • First Online:
Adaptation to Climate Change in Agriculture

Abstract

Reducing the occurrence of heat-related damages, such as rice chalkiness and spikelet sterility, is the major goal in global rice production under climate change. In Japan, multiple heat-tolerant cultivars have been developed to reduce the occurrence of chalky rice using conventional breeding, whereas at present no cultivars have been developed as heat-tolerant cultivars for spikelet sterility. Numerous studies have investigated the cause(s) of each phenomenon mostly at tissue level, while the exact mechanism(s) behind each phenomenon at cell level is still not well understood. Considering the predicted increase in heat risk, development of superior heat-tolerant cultivars is strongly desired as a countermeasure. Heat tolerance of multiple lines/cultivars has been evaluated under fluctuating environmental conditions; however, field evaluation is demanding and complicated because of the low reproducibility of heat conditions in the field. To address these issues, robust high-throughput screening methods are required. Recently, several attempts to overcome the heat-related damages have been made by using environmental control. In this chapter, recent progress focused on these attempts and future prospects have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Boyer JS, Cavalieri AJ, Schulze ED (1985) Control of the rate of cell enlargement – excision, wall relaxation, and growth-induced water potentials. Planta 163(4):527–543

    Article  CAS  Google Scholar 

  • Del Rosario AR, Briones VP, Vidal AJ, Juliano BO (1968) Composition and endosperm structure of developing and mature rice kernel. Cereal Chem 45(3):225–235

    Google Scholar 

  • Gholipour Y, Erra-Balsells R, Hiraoka K, Nonami H (2013) Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites. Anal Biochem 433(1):70–78

    Article  CAS  Google Scholar 

  • Hakata M, Wada H, Masumoto-Kubo C, Tanaka R, Sato H, Morita S (2017) Development of a new heat tolerance assay system for rice spikelet sterility. Plant Methods 13:1–8

    Article  Google Scholar 

  • Hasegawa T, Ishimaru T, Kondo M, Kuwagata T, Yoshimoto M, Fukuoka M (2011) Spikelet sterility of rice observed in the record hot summer of 2007 and the factors associated with its variation. J Agric Meteorol 67(4):225–232. https://doi.org/10.2480/agrmet.67.4.3

    Article  Google Scholar 

  • Hatakeyama Y, Masumoto-Kubo C, Nonami H, Morita S, Hiraoka K, Onda Y, Nakashima T, Nakano H, Wada H (2018) Evidence for preservation of vacuolar compartments during foehn-induced chalky ring formation of Oryza sativa L. Planta 248:1263–1275. https://doi.org/10.1007/s00425-018-2975-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T (1995) Rice production in Japan under current and future climates. In: Modeling the impact of climate change on rice production in Asia. CAB International, Wallingford, pp 143–164

    Google Scholar 

  • Horie T, Matsui T, Nakagawa H, Omasa K (1996) Effects of elevated CO2 and global climate change on rice yield in Japan. In: Climate change and plants in East Asia. Springer-verlag, Tokyo

    Google Scholar 

  • Hoshikawa K (1989) The growing rice plant: an anatomical monograph. Nobunkyo, Tokyo

    Google Scholar 

  • Hüsken D, Steudle E, Zimmermann U (1978) Pressure probe technique for measuring water relations of cells in higher-plants. Plant Physiol 61(2):158–163. https://doi.org/10.1104/pp.61.2.158

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Ishihara K, Horiguchi T, Mizuno S, Takahashi H (2005) On the occurence of milky white like kernels of rice plants under high temperature conditions with reference to water stress and nitrogen fertilizer application in 2003. Proc Jpn J Crop Sci 74:122–123

    Google Scholar 

  • Ishimaru T, Hirabayashi H, Sasaki K, Ye C, Kobayashi A (2016) Breeding efforts to mitigate damage by heat stress to spikelet sterility and grain quality. Plant Prod Sci 19(1):12–21

    Article  CAS  Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2007) High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot 58(7):1627–1635

    Article  CAS  Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2008) Phenotyping parents of mapping populations of rice for heat tolerance during anthesis. Crop Sci 48(3):1140–1146

    Article  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61(1):143–156

    Article  CAS  Google Scholar 

  • Jagadish SVK, Murty MVR, Quick WP (2015) Rice responses to rising temperatures-challenges, perspectives and future directions. Plant Cell Envirn 38(9):1686–1698

    Article  CAS  Google Scholar 

  • Kobayashi A, Sonoda J, Sugimoto K, Kondo M, Iwasawa N, Hayashi T, Tomita K, Yano M, Shimizu T (2013) Detection and verification of QTLs associated with heat-induced quality decline of rice (Oryza sativa L.) using recombinant inbred lines and near-isogenic lines. Breed Sci 63(3):339–346

    Article  CAS  Google Scholar 

  • Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y (2014) Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet 46(4):398–404. https://doi.org/10.1038/ng.2923

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lawas LMF, Malo R, Glaubitz U, Erban A, Mauleon R, Heuer S, Zuther E, Kopka J, Hincha DK, Jagadish KSV (2015) Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environ 38(10):2171–2192

    Article  CAS  Google Scholar 

  • MAFF (2018) Standard evaluation for rice varieties. The Ministry of Agriculture, Forestry and Fisheries, Japan, 2018

    Google Scholar 

  • Maruyama A, Weerakoon WMW, Wakiyama Y, Ohba K (2013) Effects of increasing temperatures on spikelet fertility in different rice cultivars based on temperature gradient chamber experiments. J Agron Crop Sci 199(6):416–423

    Article  Google Scholar 

  • Matsui T, Omasa K (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot 89(6):683–687

    Article  Google Scholar 

  • Matsui T, Namuco OS, Ziska LH, Horie T (1997a) Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crop Res 51(3):213–219. https://doi.org/10.1016/S0378-4290(96)03451-X

    Article  Google Scholar 

  • Matsui T, Omasa K, Horie T (1997b) High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Jpn J Crop Sci 66(3):449–455. https://doi.org/10.1626/jcs.66.449

    Article  Google Scholar 

  • Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Prod Sci 4(2):90–93. https://doi.org/10.1626/pps.4.90

    Article  Google Scholar 

  • Morita S, Nakano H (2011) Nonstructural carbohydrate content in the stem at full heading contributes to high performance of ripening in heat-tolerant rice cultivar Nikomaru. Crop Sci 51(2):818–828. https://doi.org/10.2135/cropsci2010.06.0373

    Article  CAS  Google Scholar 

  • Morita S, Shiratsuchi H, Takahashi J, Fujita K (2004) Effect of high temperature on grain ripening in rice plants: analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Jpn J Crop Sci 73(1):77–83. https://doi.org/10.1626/jcs.73.77

    Article  Google Scholar 

  • Morita S, Yonemaru J, Takanashi J (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot 95(4):695–701. https://doi.org/10.1093/aob/mci071

    Article  PubMed  PubMed Central  Google Scholar 

  • Morita S, Wada H, Matsue Y (2016) Countermeasures for heat damage in rice grain quality under climate change. Plant Prod Sci 19(1):1–11

    Article  CAS  Google Scholar 

  • Nagato K, Chaudhry FM (1970) Influence of panicle clipping, flag leaf cutting and shading on ripening of Japonica and Indica rice. Proc Crop Sci Soc Jpn 39:204–212

    Article  Google Scholar 

  • Nakagawa H, Horie T, Matsui T (2003) Effects of climate change on rice production and adaptive technologies. In: Mew TW, Brar DS, Peng S, Dawe D, Hardy B (eds) Rice science: innovations and impact for livelihood. Proceedings of international rice research conference. International Rice Research Institute, Los Baños, pp 635–658

    Google Scholar 

  • Nakashima T, Wada H, Morita S, Erra-Balsells R, Hiraoka K, Nonami H (2016) Single-cell metabolite profiling of stalk and glandular cells of intact trichomes with internal electrode capillary pressure probe electrospray ionization mass spectrometry. Anal Chem 88(6):3049–3057

    Article  CAS  Google Scholar 

  • Nishiyama I, Satake T (1981) High-temperature damages in rice plants. Jpn J Trop Agr 25(1):14–19

    Google Scholar 

  • Nonami H, Boyer JS (1993) Direct demonstration of a growth-induced water potential gradient. Plant Physiol 102(1):13–19

    Article  CAS  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH, Sheehy JE, Thomas JMG (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop Res 95(2–3):398–411

    Article  Google Scholar 

  • Sakai M, Okamoto M, Tamura K, Kaji R, Mizobuchi R, Hirabayashi H, Fukaura S, Nishimura M, Yagi T (2007) “Nikomaru”, a new rice variety with excellent palatability and grain appearance developed for warm region of Japan. Breed Res 9:67–73

    Google Scholar 

  • Satake T, Yoshida S (1978) High temperature-induced sterility in indica rices at flowering. Jpn J Crop Sci 47(1):6–17. https://doi.org/10.1626/jcs.47.6

    Article  Google Scholar 

  • Sato H, Ishii T, Ohta H, Maeda H, Ideta O, Takeuchi Y, Kaji R, Nagaoka I, Hirabayashi H, Shigemune A, Tamura K (2018) Selection of rice standard varieties for evaluating grain quality under high temperature, employed in the examination of applied variety of MAFF. In: Proceedings of Japanese society of breeding. Fukuoka, Japan, March 2018, pp 223, P099

    Google Scholar 

  • Sreenivasulu N, Butardo VM, Misra G, Cuevas RP, Anacleto R, Kishor PBK (2015) Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot 66(7):1737–1748

    Article  CAS  Google Scholar 

  • Steudle E (1993) Pressure probe techniques: basic principles and application to studies of water and solute relations at the cell, tissue and organ level. In: Smith J, Griffiths H (eds) Water deficits: plant responses from cell to community. Bios Scientific Publishers, Oxford, pp 5–36

    Google Scholar 

  • Tashiro T, Wardlaw IF (1991) The effect of high-temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust J Agric Res 42(3):485–496

    Article  Google Scholar 

  • Tomos AD, Leigh RA (1999) The pressure probe: a versatile tool in plant cell physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(1):447–472

    Article  CAS  Google Scholar 

  • Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T (2014) Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment. Rice 7:6

    Article  Google Scholar 

  • Wada H, Nonami H, Yabuoshi Y, Maruyama A, Tanaka A, Wakamatsu K, Sumi T, Wakiyama Y, Ohuchida M, Morita S (2011) Increased ring-shaped chalkiness and osmotic adjustment when growing rice grains under foehn-induced dry wind condition. Crop Sci 51(4):1703–1715. https://doi.org/10.2135/cropsci2010.08.0503

    Article  Google Scholar 

  • Wada H, Masumoto-Kubo C, Gholipour Y, Nonami H, Tanaka F, Erra-Balsells R, Tsutsumi K, Hiraoka K, Morita S (2014) Rice chalky ring formation caused by temporal reduction in starch biosynthesis during osmotic adjustment under foehn-induced dry wind. PLoS One 9(10):e110374. https://doi.org/10.1371/journal.pone.0110374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada T, Inoue T, Tsubone M, Ogata T, Miyahara K, Hamachi Y, Furusho M, Miyazaki M, Yamaguchi O, Ishibashi M, Sato H, Matsue Y (2016) ‘Minoritsukushi’, a new rice cultivar with medium-late maturity, high yield, fine palatability and tolerance to high temperature during ripening period. Bull Fukuoka Agric For Res Center 2:1–7

    Google Scholar 

  • Wada H, Hatakeyama Y, Onda Y, Nonami H, Nakashima T, Erra-Balsells R, Morita S, Hiraoka K, Tanaka F, Nakano H (2019) Multiple strategies for heat adaptation to prevent chalkiness in the rice endosperm. J Exp Bot 70(4):1299–1311

    Article  Google Scholar 

  • Wakamatsu K, Sasaki O, Uezono I, Tanaka A (2008) Effect of the amount of nitrogen application on occurrence of white-back kernels during ripening of rice under high-temperature conditions. Jpn J Crop Sci 77(4):424–433. https://doi.org/10.1626/jcs.77.424

    Article  Google Scholar 

  • Wakamatsu K, Yamane I, Sato M, Komaki Y, Ohuchida M, Mori K, Sonoda J, Goto H, Shigemizu T, Kuwahara H, Tanaka A, Nagayoshi S (2016) Breeding a new rice cultivar ‘Natsuhonoka’. Bull Kagoshima Pref Ins Agric Dev 10:9–20

    Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23–29. https://doi.org/10.1038/s41477-017-0083-8

    Article  PubMed  Google Scholar 

  • Weerakoon WMW, Maruyama A, Ohba K (2008) Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L). J Agron Crop Sci 194(2):135–140

    Article  Google Scholar 

  • Yang YY, Huang YY, Wu JH, Liu N, Deng JW, Luan TG (2017) Single-cell analysis by ambient mass spectrometry. Trac-Trend Anal Chem 90:14–26

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Drs. Hiroshi Nakano, Makoto Hakata, and Yuto Hatakeyama for helpful comments on the manuscript. This work was supported by JSPS KAKENHI Grant Number 16H02533 and 16H04870.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Wada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wada, H. (2019). New Approaches Combined with Environmental Control for Enhancing Heat-Tolerant Rice Breeding in Japan. In: Iizumi, T., Hirata, R., Matsuda, R. (eds) Adaptation to Climate Change in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-9235-1_3

Download citation

Publish with us

Policies and ethics