Skip to main content

Stability Analysis of Two-Dimensional Incommensurate Systems of Fractional-Order Differential Equations

  • Conference paper
  • First Online:
Book cover Fractional Calculus and Fractional Differential Equations

Part of the book series: Trends in Mathematics ((TM))

  • 1364 Accesses

Abstract

Recently obtained necessary and sufficient conditions for the asymptotic stability and instability of the null solution of a two-dimensional autonomous linear incommensurate fractional-order dynamical system with Caputo derivatives are reviewed and extended. These theoretical results are then applied to investigate the stability properties of a two-dimensional fractional-order conductance-based neuronal model. Moreover, the occurrence of Hopf bifurcations is also discussed, choosing the fractional orders as bifurcation parameters. Numerical simulations are also presented to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)

    Article  Google Scholar 

  2. Armanyos, M., Radwan, A.G.: Fractional-order fitzhugh-nagumo and izhikevich neuron models. In: 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–5. IEEE (2016)

    Google Scholar 

  3. Bonnet, C., Partington, J.R.: Coprime factorizations and stability of fractional differential systems. Syst. Control. Lett. 41(3), 167–174 (2000)

    Article  MathSciNet  Google Scholar 

  4. Brandibur, O., Kaslik, E.: Stability properties of a two-dimensional system involving one caputo derivative and applications to the investigation of a fractional-order Morris-Lecar neuronal model. Nonlinear Dyn. 90(4), 2371–2386 (2017)

    Article  MathSciNet  Google Scholar 

  5. Brandibur, O., Kaslik, E.: Stability of Two-Component Incommensurate Fractional-Order Systems and Applications to the Investigation of a FitzHugh-Nagumo Neuronal Model. Math. Methods Appl. Sci. 41(17), 7182–7194 (2018)

    Article  MathSciNet  Google Scholar 

  6. Čermák, J., Kisela, T.: Stability properties of two-term fractional differential equations. Nonlinear Dyn. 80(4), 1673–1684 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cottone, G., Di Paola, M., Santoro, R.: A novel exact representation of stationary colored gaussian processes (fractional differential approach). J. Phys. A: Math. Theor. 43(8), 085002 (2010)

    Article  MathSciNet  Google Scholar 

  8. Datsko, B., Luchko, Y.: Complex oscillations and limit cycles in autonomous two-component incommensurate fractional dynamical systems. Math. Balk. 26, 65–78 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2004)

    Google Scholar 

  10. Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation. Springer, Berlin (1974)

    Book  Google Scholar 

  11. Maolin, D., Wang, Z., Haiyan, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3, 3431 (2013)

    Article  Google Scholar 

  12. Engheia, N.: On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 39(4), 35–46 (1997)

    Article  Google Scholar 

  13. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  14. Gorenflo, R., Mainardi, F.: Fractional calculus, integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. CISM Courses and Lecture Notes, vol. 378, pp. 223–276. Springer, Wien (1997)

    Chapter  Google Scholar 

  15. Henry, B.I., Wearne, S.L.: Existence of turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 62, 870–887 (2002)

    Article  MathSciNet  Google Scholar 

  16. Heymans, N., Bauwens, J.-C.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta 33, 210–219 (1994)

    Article  Google Scholar 

  17. Huang, S., Xiang, Z.: Stability of a class of fractional-order two-dimensional non-linear continuous-time systems. IET Control Theory Appl. 10(18), 2559–2564 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  19. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    Google Scholar 

  20. Li, C., Ma, Y.: Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71(4), 621–633 (2013)

    Article  MathSciNet  Google Scholar 

  21. Li, C.P., Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J.-Spec. Top. 193, 27–47 (2011)

    Article  Google Scholar 

  22. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  Google Scholar 

  23. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335–1342 (2008)

    Article  Google Scholar 

  24. Mainardi, F.: Fractional relaxation-oscillation and fractional phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)

    Article  MathSciNet  Google Scholar 

  25. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In Computational Engineering in Systems Applications, pp. 963–968 (1996)

    Google Scholar 

  26. Mozyrska, D., Wyrwas, M.: Explicit criteria for stability of fractional h-difference two-dimensional systems. Int. J. Dyn. Control. 5(1), 4–9 (2017)

    Article  MathSciNet  Google Scholar 

  27. Mozyrska, D., Wyrwas, M.: Stability by linear approximation and the relation between the stability of difference and differential fractional systems. Math. Methods Appl. Sci. 40(11), 4080–4091 (2017)

    Article  MathSciNet  Google Scholar 

  28. Petras, I.: Stability of fractional-order systems with rational orders (2008). arXiv preprint arXiv:0811.4102

  29. Podlubny, I.: Fractional Differential Equations. Academic, New York (1999)

    Google Scholar 

  30. Radwan, A.G., Elwakil, A.S., Soliman, A.M.: Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(7), 2051–2063 (2008)

    Article  MathSciNet  Google Scholar 

  31. Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013 (2013)

    Google Scholar 

  32. Sabatier, J., Farges, C.: On stability of commensurate fractional order systems. Int. J. Bifurc. Chaos 22(04), 1250084 (2012)

    Article  Google Scholar 

  33. Trächtler, A.: On BIBO stability of systems with irrational transfer function (2016). arXiv preprint arXiv:1603.01059

  34. Wang, Z., Yang, D., Zhang, H.: Stability analysis on a class of nonlinear fractional-order systems. Nonlinear Dyn. 86(2), 1023–1033 (2016)

    Article  MathSciNet  Google Scholar 

  35. Weinberg, S.H.: Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin-Huxley model. PloS one 10(5), e0126629 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kaslik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brandibur, O., Kaslik, E. (2019). Stability Analysis of Two-Dimensional Incommensurate Systems of Fractional-Order Differential Equations. In: Daftardar-Gejji, V. (eds) Fractional Calculus and Fractional Differential Equations. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-9227-6_5

Download citation

Publish with us

Policies and ethics