Skip to main content

Analysis of 2-Term Fractional-Order Delay Differential Equations

  • Conference paper
  • First Online:
  • 1340 Accesses

Part of the book series: Trends in Mathematics ((TM))

Abstract

The value of a state variable at past time usually affects its rate of change at the present time. So, it is very natural to consider the delay while modeling the real-life systems. Further, the nonlocal fractional derivative operator is also useful in modeling memory in the system. Hence, the models involving delay as well as fractional derivative are very important. In this chapter, we review the basic results regarding the dynamical systems, fractional calculus, and delay differential equations. Further, we analyze 2-term nonlinear fractional-order delay differential equation \(D^\alpha x + c D^\beta x = f\left( x,x_\tau \right) \), with constant delay \(\tau >0\) and fractional orders \(0<\alpha<\beta <1\). We present a numerical method for solving such equations and present an example exhibiting chaotic oscillations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agrawal, O.P.: Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58(9), 1838–1843 (2009)

    Article  MathSciNet  Google Scholar 

  3. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, New York (2008)

    Google Scholar 

  4. Babakhani, A., Daftardar-Gejji, V.: Existence of positive solutions of nonlinear fractional differential equations. J. Math. Anal. Appl. 278(2), 434–442 (2003)

    Article  MathSciNet  Google Scholar 

  5. Babakhani, A., Daftardar-Gejji, V.: Existence of positive solutions for N-term non-autonomous fractional differential equations. Positivity 9, 193–206 (2005)

    Article  MathSciNet  Google Scholar 

  6. Baleanu, D., Magin, R., Bhalekar, S., Daftardar-Gejji, V.: Chaos in the fractional order nonlinear Bloch equation with delay. Commun. Nonlinear Sci. Numer. Simul. 25(1), 41–49 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bhalekar, S.: Dynamical analysis of fractional order Ucar prototype delayed system. Signals Image Video Process. 6(3), 513–519 (2012)

    Article  Google Scholar 

  8. Bhalekar, S.: Stability analysis of a class of fractional delay differential equations. Pramana 81(2), 215–224 (2013)

    Article  Google Scholar 

  9. Bhalekar, S.: Stability and bifurcation analysis of a generalized scalar delay differential equation. Chaos 26(8), 084306 (2016)

    Article  MathSciNet  Google Scholar 

  10. Bhalekar, S., Daftardar-Gejji, V.: Fractional ordered Liu system with time-delay. Commun. Nonlinear Sci. Numer. Simul. 15(8), 2178–2191 (2010)

    Article  MathSciNet  Google Scholar 

  11. Bhalekar, S., Daftardar-Gejji, V.: A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl. 1(5), 1–9 (2011)

    MATH  Google Scholar 

  12. Bhalekar, S., Daftardar-Gejji, V.: Solving fractional-order logistic equation using a new iterative method. Int. J. Differ. Equ. 2012, Article number 975829 (2012)

    Google Scholar 

  13. Bhalekar, S., Daftardar-Gejji, V.: Existence and uniqueness theorems for fractional differential equations: A new approach. In: Daftardar-Gejji, V., (ed.) Fractional Calculus: Theory and Applications. Narosa Publishing House, New Delhi (2013). ISBN 978-81-8487-333-7

    Google Scholar 

  14. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Fractional Bloch equation with delay. Comput. Math. Appl. 61(5), 1355–1365 (2011)

    Article  MathSciNet  Google Scholar 

  15. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Generalized fractional order Bloch equation with extended delay. Int. J. Bifurc. Chaos 22(4), 1250071 (2012)

    Article  Google Scholar 

  16. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Transient chaos in fractional Bloch equations. Comput. Math. Appl. 64(10), 3367–3376 (2012)

    Article  Google Scholar 

  17. Chen, Y., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dyn. 29(1), 191–200 (2002)

    Article  MathSciNet  Google Scholar 

  18. Choudhari, S., Daftardar-Gejji, V.: Existence uniqueness theorems for multi-term fractional delay differential equations. Fract. Calc. Appl. Anal. 5(18), 1113–1127 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Daftardar-Gejji, V.: Positive solutions of a system of non-autonomous fractional differential equations. J. Math. Anal. Appl. 302(1), 56–64 (2005)

    Article  MathSciNet  Google Scholar 

  20. Daftardar-Gejji, V., Babakhani, A.: Analysis of a system of fractional differential equations. J. Math. Anal. Appl. 293(2), 511–522 (2004)

    Article  MathSciNet  Google Scholar 

  21. Daftardar-Gejji, V., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301(2), 508–518 (2005)

    Article  MathSciNet  Google Scholar 

  22. Daftardar-Gejji, V., Bhalekar, S., Gade, P.: Dynamics of fractional ordered Chen system with delay. Pramana-J. Phys. 79(1), 61–69 (2012)

    Article  Google Scholar 

  23. Daftardar-Gejji, V., Sukale, Y., Bhalekar, S.: A new predictorcorrector method for fractional differential equations. Appl. Math. Comput. 244, 158–182 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Daftardar-Gejji, V., Sukale, Y., Bhalekar, S.: Solving fractional delay differential equations: A new approach. Fract. Calc. Appl. Anal. 18(2), 400–418 (2015)

    Article  MathSciNet  Google Scholar 

  25. Delbosco, D., Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204, 609–625 (1996)

    Article  MathSciNet  Google Scholar 

  26. Deng, W., Li, C., Lü, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MathSciNet  Google Scholar 

  27. Diethelm, K., Ford, N.J., Freed, A.D.: A predictorcorrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  Google Scholar 

  28. Feliu, V., Rivas, R., Castillo, F.J.: Fractional robust control to delay changes in main irrigation canals. In: Proceedings of the 16th International Federation of Automatic Control World Congress. Czech Republic, Prague (2005)

    Google Scholar 

  29. Feliu, V., Rivas, R., Castillo, F.: Fractional order controller robust to time delay variations for water distribution in an irrigation main canal pool. Comput. Electron. Agric. 69(2), 185–197 (2009)

    Article  Google Scholar 

  30. Hotzel, R.: Summary: some stability conditions for fractional delay systems. J. Math. Syst. Estim. Control 8, 499–502 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Hwang, C., Cheng, Y.C.: A numerical algorithm for stability testing of fractional delay systems. Automatica 42, 825–831 (2006)

    Article  MathSciNet  Google Scholar 

  32. Jafari, H., Daftardar-Gejji, V.: Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput. 180(2), 700–706 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Kiryakova, V.: A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11(2), 203–220 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Lazarevic, M.P., Debeljkovic, D.L.: Finite time stability analysis of linear autonomous fractional order systems with delayed state. Asian J. Control 7(4), 440–447 (2005)

    Article  MathSciNet  Google Scholar 

  35. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application multiconference, vol. 2, pp. 963–968, IMACS, IEEE-SMC Proceedings. Lille, France (1996)

    Google Scholar 

  36. Meiss, J.D.: Differential Dynamical Systems. SIAM, Philadelphia (2007)

    Google Scholar 

  37. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D.Y., Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, London (2010)

    Book  Google Scholar 

  38. Moornani, K., Haeri, M.: On robust stability of LTI fractional-order delay systems of retarded and neutral type. Automatica 46, 362–368 (2010)

    Article  MathSciNet  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  40. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    Google Scholar 

  41. Si-Ammour, A., Djennoune, S., Bettayeb, M.: A sliding mode control for linear fractional systems with input and state delays. Commun. Nonlinear Sci. Numer. Simul. 14, 2310–2318 (2009)

    Article  MathSciNet  Google Scholar 

  42. Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)

    Article  MathSciNet  Google Scholar 

  43. Tavazoei, M.S., Haeri, M.: Regular oscillations or chaos in a fractional order system with any effective dimension. Nonlinear Dyn. 54(3), 213–222 (2008)

    Article  MathSciNet  Google Scholar 

  44. Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Phys. D 237, 2628–2637 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Council of Scientific and Industrial Research, New Delhi, India for funding through Research Project [25(0245)/15/EMR-II] and the Science and Engineering Research Board (SERB), New Delhi, India for the Research Grant [Ref. MTR/2017/000068] under Mathematical Research Impact Centric Support (MATRICS) Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Bhalekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhalekar, S. (2019). Analysis of 2-Term Fractional-Order Delay Differential Equations. In: Daftardar-Gejji, V. (eds) Fractional Calculus and Fractional Differential Equations. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-9227-6_4

Download citation

Publish with us

Policies and ethics