Skip to main content

Removal of Indoor Air Pollutants Using Activated Carbon—A Review

  • Conference paper
  • First Online:
Global Challenges in Energy and Environment

Abstract

Indoor air pollution and its control are a major health concern as a person spends 70% of his day indoors. Adsorption is one of the most preferred air purification systems as it has no by-products. Zeolites, porous clay ore, activated alumina, silica gel, and molecular sieve adsorbents have also been used for removal of the indoor air pollutants. Activated carbon is preferred due to its high microporous volume and adsorption kinetics. Researchers have studied the removal efficiency of activated carbon using various methods under various conditions. Carbon activated chemically or thermally can be used for removal of indoor air pollutants in the form of granules or fibers. The present study compares the effects of activation process, temperature, and relative humidity on the removal efficiency of activated carbon as an indoor air purifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spengler, J.D., Sexton, K.: Indoor air pollution: a public health perspective. Am. Assoc. Adv. Sci. 221(4605), 9–17 (1983)

    Google Scholar 

  2. Menichini, E., Iacovella, N., Monfredini, F., Turrio-Baldassarri, L.: Relationships between indoor and outdoor air pollution by carcinogenic PAHs and PCBs. Atmos. Environ. 41(40) 9518–9529 (2007)

    Article  Google Scholar 

  3. Pei, L., Zhou, J., Zhang, L.: Preparation and properties of Ag-coated activated carbon nanocomposites for indoor air quality control. Build. Environ. 63, 108–113 (2013)

    Article  Google Scholar 

  4. Wang, S., Ang, H.M., Tade, M.O.: Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ. Int. 33(5), 694–705 (2007)

    Article  Google Scholar 

  5. Steinemann, A.: Ten questions concerning air fresheners and indoor built environments. Build. Environ. 111, 279–284 (2017)

    Article  Google Scholar 

  6. Missia, D.A., Demetriou, E., Michael, N., Tolis, E.I., Bartzis, J.G.: Indoor exposure from building materials: a field study. Atmos. Environ. 44(35), 4388–4395 (2010)

    Article  Google Scholar 

  7. Ciuzas, D., et al.: Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality. Atmos. Environ. 118, 107–117 (2015)

    Article  Google Scholar 

  8. Pei, X.Q., Song, M., Guo, M., Mo, F.F., Shen, X.Y.: Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments. Atmos. Environ. 68, 17–23 (2013)

    Article  Google Scholar 

  9. Penney, D., Benignus, V., Kephalopoulos, S., Kotzias, D., Kleinman, M., Verrier, A.: Guidelines for indoor air quality. WHO Guidel. 9 454 (2010)

    Google Scholar 

  10. Singer, B.C., et al.: Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone. Atmos. Environ. 40(35), 6696–6710 (2006)

    Article  Google Scholar 

  11. Lorimier, C., Subrenat, A., Le Coq, L., Le Cloirec, P.: Adsorption of toluene onto activated carbon fibre cloths and felts: application to indoor air treatment. Environ. Technol. 26(11) 1217–1230 (2005)

    Article  Google Scholar 

  12. Foster, K.L., Fuerman, R.G., Economy, J., Larson, S.M., Rood, M.J.: Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers. Chem. Mater. 4(5), 1068–1073 (1992)

    Article  Google Scholar 

  13. Yu, Q.L., Brouwers, H.J.H.: Applied Catalysis B: environmental Indoor air purification using heterogeneous photocatalytic oxidation. Part I: experimental study. Appl. Catal. B Environ. 92, 454–461 (2009)

    Article  Google Scholar 

  14. Shafeeyan, M.S., Mohd, W., Wan, A., Houshmand, A., Shamiri, A.: A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis. 89(2) 143–151 (2010)

    Article  Google Scholar 

  15. Zhang, X., Gao, B., Creamer, A.E., Cao, C., Li, Y.: Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 338, 102–123 (2017)

    Article  Google Scholar 

  16. Das, D., Gaur, V., Verma, N.: Removal of volatile organic compound by activated carbon fiber. 42 2949–2962 (2004)

    Google Scholar 

  17. Gallego, E., Roca, F.J., Perales, J.F., Guardino, X.: Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement. Build. Environ. 67, 14–25 (2013)

    Article  Google Scholar 

  18. Chiang, Y.-C., Chiang, P.-C., Huang, C.-P.: Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon N. Y. 39(4), 523–534 (2001)

    Article  Google Scholar 

  19. Li, L., Liu, S., Liu, J.: Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J. Hazard. Mater. 192(2) 683–690 (2011)

    Article  Google Scholar 

  20. Caturla, F., Molina-Sabio, M., Rodríguez-Reinoso, F.: Preparation of activated carbon by chemical activation with ZnCl2. Carbon N. Y 29(7) 999–1007 (1991)

    Article  Google Scholar 

  21. Ioannidou, O., Zabaniotou, A.: Agricultural residues as precursors for activated carbon production-a review. Renew. Sustain. Energy Rev. 11(9), 1966–2005 (2007)

    Article  Google Scholar 

  22. Adegoke, K.A., Bello, O.S.: Dye sequestration using agricultural wastes as adsorbents. Water Resour. Ind. 12, 8–24 (2015)

    Article  Google Scholar 

  23. Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., Sanchez-Polo, M.: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manage. 85(4), 833–846 (2007)

    Article  Google Scholar 

  24. Thomas, W.J., Crittenden, B.: Adsorption Technology and Design. Elsevier Science & Technology Books, London, United Kingdom (1998)

    Google Scholar 

  25. Aktaş, Ö., Ferhan, Ç.: Fundamentals of Adsorption onto Activated Carbon in Water and Wastewater Treatment. Wiley-VCH Verlag GmbH & Co KGaA, Germany (2012)

    Google Scholar 

  26. Bansal, R.C.R.C., Goyal, M., Roop, C.B., Meenakshi, G., Bansal, R.C.R.C., Goyal, M.: Activated Carbon Adsorption. Taylor & Francis Group (2005)

    Google Scholar 

  27. Haghighat, F., Lee, C.S., Pant, B., Bolourani, G., Lakdawala, N., Bastani, A.: Evaluation of various activated carbons for air cleaning—towards design of immune and sustainable buildings. Atmos. Environ. 42(35), 8176–8184 (2008)

    Article  Google Scholar 

  28. Lordgooei, M., Carmichael, K.R., Kelly, T.W., Rood, M.J., Larson, S.M.: Activated carbon cloth adsorption-cryogenic system to recover toxic volatile organic compounds. Gas Sep. Purif. 10(2) 123–130 (1996)

    Article  Google Scholar 

  29. Ramos, M.E., Bonelli, P.R., Cukierman, A.L., Ribeiro Carrott, M.M.L., Carrott, P.J.M.: Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor. J. Hazard. Mater. 177(1–3) 175–182 (2010)

    Article  Google Scholar 

  30. Carrott, P., Nabais, J., Ribeiro Carrot, M., Pajares, J.A.: Preparation of activated carbon fibres from acrylic textile fibres. Carbon N. Y. 39(10) 1543–1555 (2001)

    Article  Google Scholar 

  31. Kim, C., Kang, S., Pui, D.Y.H.: Removal of airborne sub-3 nm particles using fibrous filters and granular activated carbons. Carbon N. Y. 104, 125–132 (2016)

    Article  Google Scholar 

  32. Tham, Y.J., Latif, P.A., Abdullah, A.M., Shamala-Devi, A., Taufiq-Yap, Y.H.: Performances of toluene removal by activated carbon derived from durian shell. Bioresour. Technol. 102(2), 724–728 (2011)

    Article  Google Scholar 

  33. Ramos, M.E., Bonelli, P.R., Cukierman, A.L., Carrott, M.M.L.R., Carrott, P.J.M.: Influence of thermal treatment conditions on porosity development and mechanical properties of activated carbon cloths from a novel nanofibre-made fabric. Mater. Chem. Phys. 116(2–3), 310–314 (2009)

    Article  Google Scholar 

  34. Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A.: Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon N. Y. 43(8), 1758–1767 (2005)

    Article  Google Scholar 

  35. Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A.: Benzene and toluene adsorption at low concentration on activated carbon fibres. Adsorption 17(3), 473–481 (2011)

    Article  Google Scholar 

  36. Huidobro, A., Pastor, A.C., Rodr guez- Reinoso, F.: Preparation of activated carbon cloth from viscous rayon. Carbon N. Y. 39(3) 389–398 (2001)

    Article  Google Scholar 

  37. Mangun, C.L., Benak, K.R., Economy, J., Foster, K.L.: Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon N. Y. 39, 1809–1820 (2001)

    Article  Google Scholar 

  38. Daifullah, A.A., Girgis, B.: Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surfaces A Physicochem. Eng. Asp. 214(1–3), 181–193 (2003)

    Article  Google Scholar 

  39. Rodríguez-Mirasol, J., Bedia, J., Cordero, T., Rodríguez, J.J.: Influence of water vapor on the adsorption of VOCs on Lignin-based activated carbons. Sep. Sci. Technol. 40(15), 3113–3135 (2005)

    Article  Google Scholar 

  40. Stavropoulos, G.G., Samaras, P., Sakellaropoulos, G.P.: Effect of activated carbons modification on porosity, surface structure and phenol adsorption. J. Hazard. Mater. 151(2–3), 414–421 (2008)

    Article  Google Scholar 

  41. Huang, Y.C., Luo, C.H., Yang, S., Lin, Y.C., Chuang, C.Y.: Improved removal of indoor volatile organic compounds by activated carbon fiber filters calcined with copper oxide catalyst. Clean Soil Air Water 38(11), 993–997 (2010)

    Article  Google Scholar 

  42. Shim, J.W., Park, S.J., Ryu, S.K.: Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon N. Y. 39(11), 1635–1642 (2001)

    Article  Google Scholar 

  43. Carratalá-Abril, J., Lillo-Ródenas, M.A., Linares-Solano, A., Cazorla-Amorós, D.: Activated carbons for the removal of low- concentration gaseous toluene at the semipilot scale. Ind. Eng. Chem. Res. 48(4), 2066–2075 (2009)

    Article  Google Scholar 

  44. Chuang, C.L., Chiang, P.C., Chang, E.E.: Modeling VOCs adsorption onto activated carbon. Chemosphere 53(1), 17–27 (2003)

    Article  Google Scholar 

  45. Huang, Z.H., Kang, F., Liang, K.M., Hao, J.: Breakthrough of methyethylketone and benzene vapors in activated carbon fiber beds. J. Hazard. Mater. 98(1–3), 107–115 (2003)

    Article  Google Scholar 

  46. Cal, M.P., Rood, M.J., Larson, S.M.: Gas phase adsorption of volatile organic compounds and water vapor on activated carbon cloth. Energy Fuels 11(2), 311–315 (1997)

    Article  Google Scholar 

  47. Kingsley, M.L., Davidson, J.H.: Adsorption of toluene onto activated carbons exposed to 100 ppb ozone. Carbon N. Y. 44(3), 560–564 (2006)

    Article  Google Scholar 

  48. Pei, J., Zhang, J.S.: Determination of adsorption isotherm and diffusion coefficient of toluene on activated carbon at low concentrations. Build. Environ. 48(1), 66–76 (2012)

    Article  Google Scholar 

  49. Ao, C.H., Lee, S.C.: Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl. Catal. B Environ. 44(3), 191–205 (2003)

    Article  Google Scholar 

  50. Li, J., Li, Z., Liu, B., Xia, Q., Xi, H.: Effect of relative humidity on adsorption of formaldehyde on modified activated carbons. Chinese J. Chem. Eng. 16(6), 871–875 (2008)

    Article  Google Scholar 

  51. Metts, T.A.: Heterogeneous reactions of ozone and d-limonene on activated carbon. Indoor Air 17(5), 362–371 (2007)

    Article  Google Scholar 

  52. Metts, T.A., Batterman, S.A.: Effect of VOC loading on the ozone removal efficiency of activated carbon filters. Chemosphere 62(1), 34–44 (2006)

    Article  Google Scholar 

  53. Khajavi, R., Bahadoran, M.M.S., Bahador, A., Khosravi, A.: Removal of microbes and air pollutants passing through nonwoven polypropylene filters by activated carbon and nanosilver colloidal layers. J. Ind. Text. 42(3), 219–230 (2013)

    Article  Google Scholar 

  54. Yoon, K.Y., Byeon, J.H., Park, C.W., Hwang, J.: Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ. Sci. Technol. 42(4), 1251–1255 (2008)

    Article  Google Scholar 

  55. Tuan, T.Q., et al.: Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. J. Hazard. Mater. 192(3), 1321–1329 (2011)

    Article  Google Scholar 

  56. Sidheswaran, M.A., Destaillats, H., Sullivan, D.P., Cohn, S., Fisk, W.J.: Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. Build. Environ. 47(1), 357–367 (2012)

    Article  Google Scholar 

  57. Raso, R.A., Zeltner, M., Stark, W.J.: Indoor air purification using activated carbon adsorbers: regeneration using catalytic combustion of intermediately stored VOC. Ind. Eng. Chem. Res. 53(9), 3622–3628 (2014)

    Article  Google Scholar 

  58. Lu, Y., Wang, D., Ma, C., Yang, H.: The effect of activated carbon adsorption on the photocatalytic removal of formaldehyde. Build. Environ. 45(3), 615–621 (2010)

    Article  Google Scholar 

  59. Höllbacher, E., Ters, T., Rieder-Gradinger, C., Srebotnik, E.: Emissions of indoor air pollutants from six user scenarios in a model room. Atmos. Environ. 150, 389–394 (2017)

    Article  Google Scholar 

  60. Uhde, E., Schulz, N.: Impact of room fragrance products on indoor air quality. Atmos. Environ. 106, 492–502 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant P. Bhave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhave, P.P., Yeleswarapu, D. (2020). Removal of Indoor Air Pollutants Using Activated Carbon—A Review. In: Sivasubramanian, V., Subramanian, S. (eds) Global Challenges in Energy and Environment. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-9213-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9213-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9212-2

  • Online ISBN: 978-981-13-9213-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics