Novel Approaches for Detecting Water-Associated Pathogens

  • Vimal K. Maurya
  • Swatantra Kumar
  • Shailendra K. SaxenaEmail author


Water-associated infectious diseases are the global concern for public health. In order to achieve the target of pathogen-free water, there is an urgent requirement to develop effective pathogen detection techniques. Advancement of pathogen indicators may help in the identification of large number of novel promising pathogens that cause water-related and water-borne diseases. Advancement of molecular techniques facilitates the differential diagnosis of various pathogens. The best recommended tests for the screening of water-associated pathogens are based on detection of the nucleic acid such as PCR, 16S rRNA, FISH, and DNA microarrays. Newer techniques are required which combine the strategy of accuracy assigned with traditional microbiology and sensitivity related with molecular biology. Biosensor technology has provided a platform which brings together both sensitivity and accuracy with rapid detection. Similarly, the early diagnosis of infectious diseases is the key to fight against it; thus, use of nano-diagnostics has proven to be promising in the detection of infectious agents as compared to traditional diagnostic methods.


PCR FISH DNA microarrays Biosensors Nanotechnology Indicators 


  1. 1.
    Bentham R, Whiley H (2018) Quantitative microbial risk assessment and opportunist waterborne infections—are there too many gaps to fill? Int J Environ Res Public Health 15(6):E1150PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Párraga-Niño N, Quero S, Ventós-Alfonso A, Uria N, Castillo-Fernandez O, Ezenarro JJ, Muñoz FX, Garcia-Nuñez M, Sabrià M (2018) New system for the detection of Legionella pneumophila in water samples. Talanta 189:324–331PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Doan T, Pinsky BA (2016) Current and future molecular diagnostics for ocular infectious diseases. Curr Opin Ophthalmol 27(6):561–567PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Alhamlan FS, Al-Qahtani AA, Al-Ahdal MN (2015) Recommended advanced techniques for waterborne pathogen detection in developing countries. J Infect Dev Ctries 9(2):128–135PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Leclerc H, Schwartzbrod L, Dei-Cas E (2002) Microbial agents associated with waterborne diseases. Crit Rev Microbiol 28(4):371–409PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ahmed AHS, Aaron ME, Alison O, Claudia VL, Matthew KL (2016) How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in ecological indicators. Ecol Indic 60:223–230CrossRefGoogle Scholar
  7. 7.
    Schijven JF, Teunis PF, Rutjes SA, Bouwknegt M, de Roda Husman AM (2011) QMRAspot: a tool for quantitative microbial risk assessment from surface water to potable water. Water Res 45(17):5564–5576PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Girones R, Ferrús MA, Alonso JL, Rodriguez-Manzano J, Calgua B, Corrêa Ade A, Hundesa A, Carratala A, Bofill-Mas S (2010) Molecular detection of pathogens in water—the pros and cons of molecular techniques. Water Res 44(15):4325–4339PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Du X, Zhou J (2018) Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci 118:444–448PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2017) Molecular biosensors for electrochemical detection of infectious pathogens in liquid biopsies: current trends and challenges. Sensors (Basel). 17(11):E2533PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wang Y, Yu L, Kong X, Sun L (2017) Application of nanodiagnostics in point-of-care tests for infectious diseases. Int J Nanomed 12:4789–4803CrossRefGoogle Scholar
  12. 12.
    Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q (2015) Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale 7(10):4291–4305PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Saunders NA (2011) Application of nanomaterials to arrays for infectious disease diagnosis. Nanomedicine (Lond) 6(2):271–280CrossRefGoogle Scholar
  14. 14.
    Farkas A, Drăgan-Bularda M, Ciatarâş D, Bocoş B, Tigan S (2012) Opportunistic pathogens and faecal indicators in drinking water associated biofilms in Cluj, Romania. J Water Health 10(3):471–483PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Won G, Gill A, Lejeune JT (2013) Microbial quality and bacteria pathogens in private wells used for drinking water in northeastern Ohio. J Water Health 11(3):555–562PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ferguson AS, Layton AC, Mailloux BJ, Culligan PJ, Williams DE, Smartt AE, Sayler GS, Feighery J, McKay LD, Knappett PS, Alexandrova E, Arbit T, Emch M, Escamilla V, Ahmed KM, Alam MJ, Streatfield PK, Yunus M, van Geen A (2012) Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater. Sci Total Environ 431:314–322PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rompré A, Servais P, Baudart J, de-Roubin MR, Laurent P (2002) Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 49(1):31–54PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Maheux AF, Boudreau DK, Bisson MA, Dion-Dupont V, Bouchard S, Nkuranga M, Bergeron MG, Rodriguez MJ (2014) Molecular method for detection of total coliforms in drinking water samples. Appl Environ Microbiol 80(14):4074–4084PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tallon P, Magajna B, Lofranco C, Leung KT (2005) Microbial indicators of faecal contamination in water: a current perspective. Water Air Soil Pollut 166:139–166CrossRefGoogle Scholar
  20. 20.
    Lin J, Ganesh A (2013) Water quality indicators: bacteria, coliphages, enteric viruses. Int J Environ Health Res 23(6):484–506PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Reynnells R, Ingram DT, Roberts C, Stonebraker R, Handy ET, Felton G, Vinyard BT, Millner PD, Sharma M (2014) Comparison of U.S. Environmental Protection Agency and U.S. Composting Council microbial detection methods in finished compost and regrowth potential of Salmonella spp. and Escherichia coli O157:H7 in finished compost. Foodborne Pathog Dis 11(7):555–567PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Althaus H, Dott W, Havemeister G, Müller HE, Sacré C (1982) Faecal streptococci as indicator organisms of drinking water. Zentralbl Bakteriol Mikrobiol Hyg A 252(2):154–165PubMedPubMedCentralGoogle Scholar
  23. 23.
    Stella EI, Ifeanyi OE (2018) A review on salmonella species and indicator organisms in drinking water. Int J Compr Res Biol Sci 5(2):5–23Google Scholar
  24. 24.
    Briancesco R (2005) Microbial indicators and fresh water quality assessment. Ann Ist Super Sanita 41(3):353–358PubMedPubMedCentralGoogle Scholar
  25. 25.
    Méndez J, Audicana A, Cancer M, Isern A, Llaneza J, Moreno B, Navarro M, Tarancón ML, Valero F, Ribas F, Jofre J, Lucena F (2004) Assessment of drinking water quality using indicator bacteria and bacteriophages. J Water Health 2(3):201–214PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hartard C, Banas S, Loutreul J, Rincé A, Benoit F, Boudaud N, Gantzer C (2016) Relevance of F-specific RNA bacteriophages in assessing human norovirus risk in shellfish and environmental waters. Appl Environ Microbiol 82(18):5709–5719PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Larsen LH, Lange J, Xu Y, Schønheyder HC (2012) Optimizing culture methods for diagnosis of prosthetic joint infections: a summary of modifications and improvements reported since 1995. J Med Microbiol 61(Pt 3):309–316PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Sanders SQ, Boothe DH, Frank JF, Arnold JW (2007) Culture and detection of Campylobacter jejuni within mixed microbial populations of biofilms on stainless steel. J Food Prot 70(6):1379–1385PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Murphy NM, McLauchlin J, Ohai C, Grant KA (2007) Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. Int J Food Microbiol 120(1–2):110–119PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP (2000) A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15(11–12):549–578PubMedCrossRefGoogle Scholar
  31. 31.
    Kuai L, Nair AA, Polz MF (2001) Rapid and simple method for the most-probable-number estimation of arsenic-reducing bacteria. Appl Environ Microbiol 67(7):3168–3173PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wohlsen T, Bates J, Vesey G, Robinson WA, Katouli M (2006) Evaluation of the methods for enumerating coliform bacteria from water samples using precise reference standards. Lett Appl Microbiol 42(4):350–356PubMedCrossRefGoogle Scholar
  33. 33.
    Liu H, Yang Y, Cui J, Liu L, Liu H, Hu G, Shi Y, Li J (2013) Evaluation and implementation of a membrane filter method for Cronobacter detection in drinking water. FEMS Microbiol Lett 344(1):60–68PubMedCrossRefGoogle Scholar
  34. 34.
    Hay J, Khan W, Mead AJ, Seal DV, Sugden JK (1994) Membrane filtration method for bacteriological testing of water: enhanced colony visualization and stability on purification of phenol red indicator. Lett Appl Microbiol 18(2):117–119PubMedCrossRefGoogle Scholar
  35. 35.
    Ekawati ER, Yusmiati SN (2018) Detection of Salmonella sp., Vibrio sp. and total plate count bacteria on blood cockle (Anadara granosa). In: IOP conference series: earth and environmental scienceCrossRefGoogle Scholar
  36. 36.
    Stadler P, Loken LC, Crawford JT, Schramm PJ, Sorsa K, Kuhn C, Savio D, Striegl RG, Butman D, Stanley EH, Farnleitner AH, Zessner M (2018) Spatial patterns of enzymatic activity in large water bodies: ship-borne measurements of beta-D-glucuronidase activity as a rapid indicator of microbial water quality. Sci Total Environ 651(Pt 2):1742–1752PubMedGoogle Scholar
  37. 37.
    George I, Petit M, Servais P (2000) Use of enzymatic methods for rapid enumeration of coliforms in freshwaters. J Appl Microbiol 88(3):404–413PubMedCrossRefGoogle Scholar
  38. 38.
    Caruso G, Crisafi E, Mancuso M (2002) Development of an enzyme assay for rapid assessment of Escherichia coli in seawaters. J Appl Microbiol 93(4):548–556PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Perry JD, James AL, Morris KA, Oliver M, Chilvers KF, Reed RH, Gould FK (2006) Evaluation of novel fluorogenic substrates for the detection of glycosidases in Escherichia coli and enterococci. J Appl Microbiol 101(5):977–985PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ramsay J (2013) High-throughput ß-galactosidase and ß-glucuronidase assays using fluorogenic substrates. Bio-protocol 3(14):e827CrossRefGoogle Scholar
  41. 41.
    Straub TM, Chandler DP (2003) Towards a unified system for detecting waterborne pathogens. J Microbiol Methods 53(2):185–197PubMedCrossRefGoogle Scholar
  42. 42.
    Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. Pathogens 4(2):307–334PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Amani J, Mirhosseini SA, Imani Fooladi AA (2014) A review approaches to identify enteric bacterial pathogens. Jundishapur J Microbiol 8(2):e17473PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lim DV, Simpson JM, Kearns EA, Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18(4):583–607PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Law JW, Ab Mutalib NS, Chan KG, Lee LH (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cordray MS, Richards-Kortum RR (2012) Emerging nucleic acid-based tests for point-of-care detection of malaria. Am J Trop Med Hyg 87(2):223–230PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Valones MA, Guimarães RL, Brandão LA, de Souza PR, de Albuquerque Tavares Carvalho A, Crovela S (2009) Principles and applications of polymerase chain reaction in medical diagnostic fields: a review. Braz J Microbiol 40(1):1–11PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Deshmukh RA, Joshi K, Bhand S, Roy U (2016) Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiology 5(6):901–922Google Scholar
  49. 49.
    Touron A, Berthe T, Pawlak B, Petit F (2005) Detection of Salmonella in environmental water and sediment by a nested-multiplex polymerase chain reaction assay. Res Microbiol 156(4):541–553PubMedCrossRefGoogle Scholar
  50. 50.
    Zeng D, Chen Z, Jiang Y, Xue F, Li B (2016) Advances and challenges in viability detection of foodborne pathogens. Front Microbiol 7:1833PubMedPubMedCentralGoogle Scholar
  51. 51.
    Mirmajlessi SM, Destefanis M, Gottsberger RA, Mänd M, Loit E (2015) PCR-based specific techniques used for detecting the most important pathogens on strawberry: a systematic review. Syst Rev 4:9PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveals numerous uncultured microorganisms in a natural community. Nature 345(6270):63–65PubMedCrossRefGoogle Scholar
  53. 53.
    Fredricks DN (2001) Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc 6(3):167–169PubMedCrossRefGoogle Scholar
  54. 54.
    Rosselli R, Romoli O, Vitulo N, Vezzi A, Campanaro S, de Pascale F, Schiavon R, Tiarca M, Poletto F, Concheri G, Valle G, Squartini A (2016) Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon. Sci Rep 6:32165PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Taib N, Mangot JF, Domaizon I, Bronner G, Debroas D (2013) Phylogenetic affiliation of SSU rRNA genes generated by massively parallel sequencing: new insights into the freshwater protist diversity. PLoS One 8(3):e58950PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fakruddin M, Mannan K (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon J Sci (Biol Sci) 42(1):19CrossRefGoogle Scholar
  57. 57.
    Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, Nadarajan R, Brodie EL, Lynch SV (2015) Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One 10(2):e0117617PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Alagappan A, Bergquist PL, Ferrari BC (2009) Development of a two-color fluorescence in situ hybridization technique for species-level identification of human-infectious Cryptosporidium spp. Appl Environ Microbiol 75(18):5996–5998PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Malic S, Hill KE, Hayes A, Percival SL, Thomas DW, Williams DW (2009) Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology 155(Pt 8):2603–2611CrossRefGoogle Scholar
  60. 60.
    Raghavachari N (2013) Microarray technology: basic methodology and application in clinical research for biomarker discovery in vascular diseases. Methods Mol Biol 1027:47–84PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Trevino V, Falciani F, Barrera-Saldaña HA (2007) DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol Med 13(9–10):527–541PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22(4):611–633PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Bouzid M, Steverding D, Tyler KM (2008) Detection and surveillance of waterborne protozoan parasites. Curr Opin Biotechnol 19(3):302–306PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lefterova MI, Suarez CJ, Banaei N, Pinsky BA (2015) Next-generation sequencing for infectious disease diagnosis and management: a report of the association for molecular pathology. J Mol Diagn 17(6):623–634PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Greay TL, Gofton AW, Paparini A, Ryan UM, Oskam CL, Irwin PJ (2018) Recent insights into the tick microbiome gained through next-generation sequencing. Parasit Vectors 11(1):12PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ghilamicael AM, Boga HI, Anami SE, Mehari T, Budambula NLM (2018) Potential human pathogenic bacteria in five hot springs in Eritrea revealed by next generation sequencing. PLoS One 13(3):e0194554PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Moreno Y, Moreno-Mesonero L, Amorós I, Pérez R, Morillo JA, Alonso JL (2018) Multiple identification of most important waterborne protozoa in surface water used for irrigation purposes by 18S rRNA amplicon-based metagenomics. Int J Hyg Environ Health 221(1):102–111PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Revez J, Espinosa L, Albiger B, Leitmeyer KC, Struelens MJ, ECDC National Microbiology Focal Points and Experts Group (2017) Survey on the use of whole-genome sequencing for infectious diseases surveillance: rapid expansion of European National Capacities, 2015–2016. Front Public Health 5:347PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Aw TG, Rose JB (2012) Detection of pathogens in water: from phylochips to qPCR to pyrosequencing. Curr Opin Biotechnol 23(3):422–430PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ahmadian A, Ehn M, Hober S (2006) Pyrosequencing: history, biochemistry and future. Clin Chim Acta 363(1–2):83–94PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hong PY, Hwang C, Ling F, Andersen GL, LeChevallier MW, Liu WT (2010) Pyrosequencing analysis of bacterial biofilm communities in water meters of a drinking water distribution system. Appl Environ Microbiol 76(16):5631–5635PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Connelly JT, Baeumner AJ (2012) Biosensors for the detection of waterborne pathogens. Anal Bioanal Chem 402(1):117–127PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60(1):1–8PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N (2017) Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res 48(1):11PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Kumar N, Hu Y, Singh S, Mizaikoff B (2018) Emerging biosensor platforms for the assessment of water-borne pathogens. Analyst 143(2):359–373PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ueda H, Dong J (2014) From fluorescence polarization to Quenchbody: recent progress in fluorescent reagentless biosensors based on antibody and other binding proteins. Biochim Biophys Acta 1844(11):1951–1959PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Martinkova P, Kostelnik A, Valek T, Pohanka M (2017) Main streams in the construction of biosensors and their applications. Int J Electrochem Sci 12:7386–7403CrossRefGoogle Scholar
  80. 80.
    Alhadrami HA (2018) Biosensors: classifications, medical applications, and future prospective. Biotechnol Appl Biochem 65(3):497–508PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60(1):91–100PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Rathee K, Dhull V, Dhull R, Singh S (2015) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54PubMedPubMedCentralGoogle Scholar
  83. 83.
    Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors (Basel) 8(3):1400–1458CrossRefGoogle Scholar
  84. 84.
    Hoß SG, Bendas G (2017) Mass-sensitive biosensor systems to determine the membrane interaction of analytes. Methods Mol Biol 1520:145–157PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62(4–5):408–423PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Mustafa F, Hassan RYA, Andreescu S (2017) Multifunctional nanotechnology-enabled sensors for rapid capture and detection of pathogens. Sensors (Basel). 17(9):E2121PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Billington C, Hudson JA, D’Sa E (2014) Prevention of bacterial foodborne disease using nanobiotechnology. Nanotechnol Sci Appl 7:73–83PubMedPubMedCentralGoogle Scholar
  89. 89.
    Holzinger M, Le Goff A, Cosnier S (2017) Synergetic effects of combined nanomaterials for biosensing applications. Sensors (Basel). 17(5):E1010PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Shinde SB, Fernandes CB, Patravale VB (2012) Recent trends in in-vitro nanodiagnostics for detection of pathogens. J Control Release 159(2):164–180PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Bridle H, Balharry D, Gaiser B, Johnston H (2015) Exploitation of nanotechnology for the monitoring of waterborne pathogens: state-of-the-art and future research priorities. Environ Sci Technol 49(18):10762–10777PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Theron J, Eugene Cloete T, de Kwaadsteniet M (2010) Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens. Crit Rev Microbiol 36(4):318–339PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin Chem 53(11):2002–2009PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Neethirajan S, Ahmed SR, Chand R, Buozis J, Nagy É (2017) Recent advances in biosensor development for foodborne virus detection. Nanotheranostics. 1(3):272–295PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors (Basel) 12(2):1657–1687CrossRefGoogle Scholar
  96. 96.
    Wang S, Singh AK, Senapati D, Neely A, Yu H, Ray PC (2010) Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chemistry 16(19):5600–5666PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Khan SA, Singh AK, Senapati D, Fan Z, Ray PC (2011) Targeted highly sensitive detection of multi-drug resistant Salmonella DT104 using gold nanoparticles. Chem Commun (Camb) 47(33):9444–9446CrossRefGoogle Scholar
  98. 98.
    Lee JS, Lytton-Jean AK, Hurst SJ, Mirkin CA (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7(7):2112–2115PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ness JM, Akhtar RS, Latham CB, Roth KA (2003) Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J Histochem Cytochem 51(8):981–987PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Kim GY, Son A (2010) Development and characterization of a magnetic bead-quantum dot nanoparticles based assay capable of Escherichia coli O157:H7 quantification. Anal Chim Acta 677(1):90–96PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Ho PL (2014) Magnetic nanoparticles for pathogen detection. Pathology 46:S45CrossRefGoogle Scholar
  102. 102.
    Chen YT, Kolhatkar AG, Zenasni O, Xu S, Lee TR (2017) Biosensing using magnetic particle detection techniques. Sensors (Basel). 17(10):E2300PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Chung HJ, Castro CM, Im H, Lee H, Weissleder R (2013) A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat Nanotechnol 8(5):369–375PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lynch M, Mosher C, Huff J, Nettikadan S, Johnson J, Henderson E (2004) Functional protein nanoarrays for biomarker profiling. Proteomics 4(6):1695–1702PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vimal K. Maurya
    • 1
  • Swatantra Kumar
    • 1
  • Shailendra K. Saxena
    • 1
    Email author
  1. 1.Centre for Advanced Research, Faculty of Medicine, King George’s Medical UniversityLucknowIndia

Personalised recommendations