Advertisement

Evolution and Interplay of Water-Associated Human Pathogens

  • Swatantra Kumar
  • Vimal K. Maurya
  • Shailendra K. SaxenaEmail author
Chapter
  • 293 Downloads

Abstract

Cholera serogroups have been identified which later includes O139 serogroup. Genetic assortment of O139 strain changes the epidemiological status of the cholera and developed strategies for the persistence in competition O1 serogroups. Similarly, heterogeneity responsible for virulence of Salmonella has been conventionally attributed to diverse distribution of genetic elements, namely bacteriophages, chromosomal pathogenicity island, transposons, plasmids, etc. Advancement of DNA sequencing and phylogenetic analysis has led to the understanding of the clear evolutionary relationship of various Shigella spp. along with E. coli. The spatial heterogeneity and intrinsic spatial structure of CF lung selection seem to play a vital role in the diversification of P. aeruginosa. Like other commensal bacteria, Helicobacter pylori have evolved several mechanisms to evade immune responses. Wide genome scanning, discovery of the low variation regions, and signature of selective sweeps allowed us to identify the various genes of malaria that underwent mutation throughout the course of evolution. The epidemiological distribution dengue serotypes is similar; however, genetically the serotypes are diverse in nature.

Keywords

Serotypes Genetic assortment Evolution Epidemiology Mutation Antibiotic resistance 

References

  1. 1.
    Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP (2014) Contamination of water resources by pathogenic bacteria. AMB Express 4:51CrossRefGoogle Scholar
  2. 2.
    Kummu M, Guillaume JH, de Moel H, Eisner S, Flörke M, Porkka M, Siebert S, Veldkamp TI, Ward PJ (2016) The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Sci Rep 6:38495CrossRefGoogle Scholar
  3. 3.
    Conway DJ, Roper C (2000) Micro-evolution and emergence of pathogens. Int J Parasitol 30(12–13):1423–1430CrossRefGoogle Scholar
  4. 4.
    Metcalf CJ, Birger RB, Funk S, Kouyos RD, Lloyd-Smith JO, Jansen VA (2015) Five challenges in evolution and infectious diseases. Epidemics 10:40–44CrossRefGoogle Scholar
  5. 5.
    Rahaman MH, Islam T, Colwell RR, Alam M (2015) Molecular tools in understanding the evolution of Vibrio cholerae. Front Microbiol 6:1040CrossRefGoogle Scholar
  6. 6.
    Greig DR, Schaefer U, Octavia S, Hunter E, Chattaway MA, Dallman TJ, Jenkins C (2018) Evaluation of whole-genome sequencing for identification and typing of Vibrio cholerae. J Clin Microbiol 56(11):e00831-18CrossRefGoogle Scholar
  7. 7.
    Keddy KH, Nadan S, Govind C, Sturm AW, Group for Enteric, Respiratory and Meningeal Disease Surveillance in South Africa (2007) Evidence for a clonally different origin of the two cholera epidemics of 2001–2002 and 1980–1987 in South Africa. J Med Microbiol 56(Pt 12):1644–1650CrossRefGoogle Scholar
  8. 8.
    Pradhan S, Baidya AK, Ghosh A, Paul K, Chowdhury R (2010) The El Tor biotype of Vibrio cholerae exhibits a growth advantage in the stationary phase in mixed cultures with the classical biotype. J Bacteriol 192(4):955–963CrossRefGoogle Scholar
  9. 9.
    Chattopadhyay DJ, Sarkar BL, Ansari MQ, Chakrabarti BK, Roy MK, Ghosh AN, Pal SC (1993) New phage typing scheme for Vibrio cholerae O1 biotype El Tor strains. J Clin Microbiol 31(6):1579–1585PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kitaoka M, Miyata ST, Unterweger D, Pukatzki S (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 60(Pt 4):397–407CrossRefGoogle Scholar
  11. 11.
    Faruque SM, Sack DA, Sack RB, Colwell RR, Takeda Y, Nair GB (2003) Emergence and evolution of Vibrio cholerae O139. Proc Natl Acad Sci U S A 100(3):1304–1309CrossRefGoogle Scholar
  12. 12.
    Kisiela DI, Chattopadhyay S, Libby SJ, Karlinsey JE, Fang FC, Tchesnokova V, Kramer JJ, Beskhlebnaya V, Samadpour M, Grzymajlo K, Ugorski M, Lankau EW, Mackie RI, Clegg S, Sokurenko EV (2012) Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin. PLoS Pathog 8(6):e1002733CrossRefGoogle Scholar
  13. 13.
    Umann D, Cunrath O (2017) Heterogeneity of Salmonella-host interactions in infected host tissues. Curr Opin Microbiol 39:57–63CrossRefGoogle Scholar
  14. 14.
    Moreno Switt AI, den Bakker HC, Cummings CA, Rodriguez-Rivera LD, Govoni G, Raneiri ML, Degoricija L, Brown S, Hoelzer K, Peters JE, Bolchacova E, Furtado MR, Wiedmann M (2012) Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. PLoS One 7(7):e41247CrossRefGoogle Scholar
  15. 15.
    Ido N, Lee K, Iwabuchi K, Izumiya H, Uchida I, Kusumoto M, Iwata T, Ohnishi M, Akiba M (2014) Characteristics of Salmonella enterica serovar 4,[5],12:i:- as a monophasic variant of serovar Typhimurium. PLoS One 9(8):e104380CrossRefGoogle Scholar
  16. 16.
    Doore SM, Schrad JR, Dean WF, Dover JA, Parent KN (2018) Shigella phages isolated during a dysentery outbreak reveal uncommon structures and broad species diversity. J Virol 92(8):e02117-17CrossRefGoogle Scholar
  17. 17.
    Zhao L, Xiong Y, Meng D, Guo J, Li Y, Liang L, Han R, Wang Y, Guo X, Wang R, Zhang L, Gao L, Wang J (2017) An 11-year study of shigellosis and Shigella species in Taiyuan, China: active surveillance, epidemic characteristics, and molecular serotyping. J Infect Public Health 10(6):794–798CrossRefGoogle Scholar
  18. 18.
    Gomes TA, Elias WP, Scaletsky IC, Guth BE, Rodrigues JF, Piazza RM, Ferreira LC, Martinez MB (2016) Diarrheagenic Escherichia coli. Braz J Microbiol 47(Suppl 1):3–30CrossRefGoogle Scholar
  19. 19.
    Sayeed S, Reaves L, Radnedge L, Austin S (2000) The stability region of the large virulence plasmid of Shigella flexneri encodes an efficient postsegregational killing system. J Bacteriol 182(9):2416–2421CrossRefGoogle Scholar
  20. 20.
    Yang J, Nie H, Chen L, Zhang X, Yang F, Xu X, Zhu Y, Yu J, Jin Q (2007) Revisiting the molecular evolutionary history of Shigella spp. J Mol Evol 64(1):71–79CrossRefGoogle Scholar
  21. 21.
    Winstanley C, O'Brien S, Brockhurst MA (2016) Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 24(5):327–337CrossRefGoogle Scholar
  22. 22.
    Hosseinidoust Z, van de Ven TG, Tufenkji N (2013) Evolution of Pseudomonas aeruginosa virulence as a result of phage predation. Appl Environ Microbiol 79(19):6110–6116CrossRefGoogle Scholar
  23. 23.
    Sadikot RT, Blackwell TS, Christman JW, Prince AS (2005) Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 171(11):1209–1223CrossRefGoogle Scholar
  24. 24.
    Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 15(7):39Google Scholar
  25. 25.
    Haley KP, Gaddy JA (2015) Helicobacter pylori: genomic Insight into the host-pathogen interaction. Int J Genomics 2015:386905CrossRefGoogle Scholar
  26. 26.
    Jones KR, Whitmire JM, Merrell DS (2010) A tale of two toxins: Helicobacter pylori CagA and VacA modulate host pathways that impact disease. Front Microbiol 1:115CrossRefGoogle Scholar
  27. 27.
    Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH (2017) Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 47(2–3):87–97CrossRefGoogle Scholar
  28. 28.
    Baird JK (2009) Resistance to therapies for infection by Plasmodium vivax. Clin Microbiol Rev 22(3):508–534CrossRefGoogle Scholar
  29. 29.
    Sridaran S, Rodriguez B, Soto AM, Macedo De Oliveira A, Udhayakumar V (2014) Molecular analysis of chloroquine and sulfadoxine-pyrimethamine resistance-associated alleles in Plasmodium falciparum isolates from Nicaragua. Am J Trop Med Hyg 90(5):840–845CrossRefGoogle Scholar
  30. 30.
    Sessions OM, Wilm A, Kamaraj US, Choy MM, Chow A, Chong Y, Ong XM, Nagarajan N, Cook AR, Ooi EE (2015) Analysis of dengue virus genetic diversity during human and mosquito infection reveals genetic constraints. PLoS Negl Trop Dis 9(9):e0004044CrossRefGoogle Scholar
  31. 31.
    Hanley KA, Guerbois M, Kautz TF, Brown M, Whitehead SS, Weaver SC, Vasilakis N, Marx PA (2014) Infection dynamics of sylvatic dengue virus in a natural primate host, the African Green Monkey. Am J Trop Med Hyg. 91(4):672–676CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Swatantra Kumar
    • 1
  • Vimal K. Maurya
    • 1
  • Shailendra K. Saxena
    • 1
    Email author
  1. 1.Centre for Advanced Research, Faculty of Medicine, King George’s Medical UniversityLucknowIndia

Personalised recommendations