Data Mining Learning of Behavioral Pattern of Internet User Students

  • Aniket MuleyEmail author
  • Atish Tangawade
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1037)


This study focuses on the students internet use in their personal life. Various aspects has been assumed with the help of data mining technique and tried to obtain some hidden outcomes of student’s internet behavior. The special focus is to test the significance based the on gender wise, location wise and different financial income group perspective to discriminate the behavioral pattern. Here, online survey is carrying out and 217 students information is gathered. The random sampling is performed for collection of data. The unsupervised and supervised learning analysis was carried out with SPSS 22.0v software package. The obtained result helps in future planning the direction of appropriate use of internet by students.


Educational analytics Chi-square test Data mining Internet 


  1. 1.
    Achana, R.A., Hegadi, R.S., Manjunath, T.N.: A novel data security framework using E-MOD for big data. In: IEEE International WIE Conference on Electrical and Computer Engineering, pp. 546–551 (2015)Google Scholar
  2. 2.
    Adeyemi, O.: Measures of association for research in educational planning and administration. Res. J. Math. Stat. 3(3), 82–90 (2011)Google Scholar
  3. 3.
    Ahad, M.A., Tripathi, G., Agarwal, P.: Learning analytics for IoE based educational model using deep learning techniques: architecture, challenges and applications. Smart Learn. Environ. 5(1), 7 (2018)CrossRefGoogle Scholar
  4. 4.
    Ali, S., Haider, Z., Munir, F., Khan, H., Ahmed, A.: Factors contributing to the students academic performance: a case study of Islamia University Sub-Campus. Am. J. Educ. Res. 1(8), 283–289 (2013)CrossRefGoogle Scholar
  5. 5.
    Anderson, K.J.: Internet use among college students: an exploratory study. J. Am. Coll. Health 50(1), 21–26 (2001)CrossRefGoogle Scholar
  6. 6.
    Bratti, M., Staffolani, S.: Student time allocation and educational production functions, University of Ancona Department of Economics Working Paper No. 170 (2002)Google Scholar
  7. 7.
    Ceyhan, A.A.: Predictors of problematic internet use on Turkish university students. Cyberpsychol. Behav. 11(3), 363–366 (2008)CrossRefGoogle Scholar
  8. 8.
    Chou, C., Condron, L., Belland, J.C.: A review of the research on internet addiction. Educ. Psychol. Rev. 17(4), 363–388 (2005)CrossRefGoogle Scholar
  9. 9.
    Considine, G., Zappala, G.: Influence of social and economic disadvantage in the academic performance of school students in Australia. J. Sociol. 38, 129–148 (2002)CrossRefGoogle Scholar
  10. 10.
    Cooper, D.T., Klein, J.L.: College students’ online pornography use: contrasting general and specific structural variables with social learning variables. Am. J. Crim. Justice. 43(3), 551–569 (2018)CrossRefGoogle Scholar
  11. 11.
    Divya, M., Manjunath, T.N., Hegadi, R.S.: A study on developing analytical model for groundnut pest management using data mining techniques. In: IEEE’s International Conference on Computational Intelligence and Communication Networks, pp. 691–696 (2014)Google Scholar
  12. 12.
    Field, A.: Discovering Statistics using R for Windows. Sage publications, Thousand Oaks (2000)zbMATHGoogle Scholar
  13. 13.
    Graetz, B.: Socio-economic status in education research and policy in John A., et al., socio-economic status and school education DEET/ACER Canberra. J. Pediatr. Psychol. 20(2), 205–216 (1995)CrossRefGoogle Scholar
  14. 14.
    Gross, E.F.: Adolescent internet use: what we expect, what teens report. J. Appl. Dev. Psychol. 25(6), 633–649 (2004)CrossRefGoogle Scholar
  15. 15.
    Gupta, S.L., Hitesh, G.: SPSS 17.0 for Researchers. International book house, Pvt. Ltd. (2011)Google Scholar
  16. 16.
    Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, New York (2011)zbMATHGoogle Scholar
  17. 17.
    Jang, Y., Kim, J., Lee, W.: Development and application of internet of things educational tool based on peer to peer network. Peer-to-Peer Network. Appl. 11(6), 1217–1229 (2018)CrossRefGoogle Scholar
  18. 18.
    Jenaro, C., Flores, N., Gómez-Vela, M., González-Gil, F., Caballo, C.: Problematic internet and cell-phone use: psychological, behavioural, and health correlates. Addict. Res. Theor. 15(3), 309–320 (2007)CrossRefGoogle Scholar
  19. 19.
    Joiner, R., Gavin, J., Duffield, J., Brosnan, M., Crook, C., Durndell, A., Lovatt, P.: Gender, internet identification, and internet anxiety: correlates of internet use. Cyber Psychol. Behav. 8(4), 371–378 (2005)CrossRefGoogle Scholar
  20. 20.
    Kim, Y., Sohn, D., Choi, S.M.: Cultural difference in motivations for using social network sites: a comparative study of American and Korean college students. Comput. Hum. Behav. 27(1), 365–372 (2011)CrossRefGoogle Scholar
  21. 21.
    Kimmons, R., Veletsianos, G.: Public internet data mining methods in instructional design, educational technology, and online learning research. TechTrends. 62(5), 492–500 (2018)CrossRefGoogle Scholar
  22. 22.
    Liñán, L.C., Pérez, Á.A.J.: Educational data mining and learning analytics: differences, similarities, and time evolution. Int. J. Educ. Technol. High. Educ. 12(3), 98–112 (2015)Google Scholar
  23. 23.
    Manjunath, T.N., Hegadi, R.S.: Statistical data quality model for data migration business enterprise. Int. J. Soft Comput. 8(5), 340–351 (2013)Google Scholar
  24. 24.
    Dunham, M.: Data Mining: Introductory and Advanced Topics. Pearson publications, USA (2002)Google Scholar
  25. 25.
    Metzger, M.J., Flanagin, A.J., Zwarun, L.: College student web use, perceptions of information credibility, and verification behaviour. Comput. Educ. 41(3), 271–290 (2003)CrossRefGoogle Scholar
  26. 26.
    Nalwa, K., Anand, A.P.: Internet addiction in students: a cause of concern. Cyberpsychol. Behav. 6(6), 653–656 (2003)CrossRefGoogle Scholar
  27. 27.
    Ogata, H., Oi, M., Mohri, K., Okubo, F., Shimada, A., Yamada, M., Wang, J., Hirokawa, S.: Learning analytics for e-book-based educational big data in higher education. In: Yasuura, H., Kyung, C.-M., Liu, Y., Lin, Y.-L. (eds.) Smart Sensors at the IoT Frontier, pp. 327–350. Springer, Cham (2017). Scholar
  28. 28.
    Özcan, N.K., Buzlu, S.: Internet use and its relation with the psychosocial situation for a sample of university students. Cyber Psychol. Behav. 10(6), 767–772 (2007)CrossRefGoogle Scholar
  29. 29.
    Pritchard, M.E., Wilson, G.S.: Using emotional and social factors to predict student success. J. Coll. Student Dev. 44(1), 18–28 (2003)CrossRefGoogle Scholar
  30. 30.
    Raman, R., Vachharajani, H., Achuthan, K.: Students motivation for adopting programming contests: innovation-diffusion perspective. Educ. Inf. Technol. 23(5), 1919–1932 (2018)CrossRefGoogle Scholar
  31. 31.
    Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theory and Applications. World scientific, Singapore (2014)CrossRefGoogle Scholar
  32. 32.
    Tsitsika, A., et al.: Internet use and misuse: a multivariate regression analysis of the predictive factors of internet use among Greek adolescents. Eur. J. Pediatr. 168(6), 655 (2009)CrossRefGoogle Scholar
  33. 33.
    Weiser, E.B.: Gender differences in internet use patterns and Internet application preferences: a two-sample comparison. Cyber Psychol. Behav. 3(2), 167–178 (2000)CrossRefGoogle Scholar
  34. 34.
    Yogish, D., Manjunath, T.N., Hegadi, R.S.: Survey on trends and methods of an intelligent answering system. In: IEEE’s International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques, pp. 346–353 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesSRTM UniversityNandedIndia

Personalised recommendations