Distance Based Edge Linking (DEL) for Character Recognition

  • Parshuram M. KambleEmail author
  • Ravindra S. HegadiEmail author
  • Rajendra S. Hegadi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1037)


This article proposes an minimum distance based edge linking algorithms for handwritten character images. Improvement of performance for machine recognition is challenging task due to noise and degraded input images. In the proposed system we enhance the recognition rate of object reconstruction for broken edges by using edge linking. Such edges of objects are reconstructed by using novel Distance based Edge Linking (DEL) approach. Developed new benchmark approach is fill the gaps between nearest edge segment of Binary image map (BIM). We obtain state-of-art performance of proposed system on character recognition (CR) using two datasets MNIST and ISI.


Feature extraction Edge map Binary image map Edge segment 


  1. 1.
    Akinlar, C., Chome, E.: PEL: a predictive edge linking algorithm. J. Vis. Commun. Image Represent. 36, 159–171 (2016)CrossRefGoogle Scholar
  2. 2.
    Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977)CrossRefGoogle Scholar
  3. 3.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRefGoogle Scholar
  5. 5.
    Jiang, J.-A., Chuang, C.-L., Lu, Y.-L., Fahn, C.-S.: Mathematical-morphology-based edge detectors for detection of thin edges in low-contrast regions. IET Image Proc. 1(3), 269–277 (2007)CrossRefGoogle Scholar
  6. 6.
    Kamble, P.M., Hegadi, R.S.: Handwritten Marathi basic character recognition using statistical method. In: Emerging Research in Computing, Information, Communication and Applications, vol. 3, pp. 28–33. Elsevier (2014)Google Scholar
  7. 7.
    Kamble, P.M., Hegadi, R.S.: Deep neural network for handwritten Marathi character recognition. Int. J. Imaging Robot.\(^{TM}\) 17(1), 95–107 (2017)Google Scholar
  8. 8.
    Liu, H., Jezek, K.C.: Automated extraction of coastline from satellite imagery by integrating canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 25(5), 937–958 (2004)CrossRefGoogle Scholar
  9. 9.
    Lu, D.-S., Chen, C.-C.: Edge detection improvement by ant colony optimization. Pattern Recogn. Lett. 29(4), 416–425 (2008)CrossRefGoogle Scholar
  10. 10.
    Pal, U., Chaudhuri, B.B.: Indian script character recognition: a survey. Pattern Recogn. 37(9), 1887–1899 (2004)CrossRefGoogle Scholar
  11. 11.
    Qiao, Y.: Modified national institute of standards and technology database (MNIST) (2007).
  12. 12.
    Ramsay, J.O.: Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika 56(4), 611–630 (1991)CrossRefGoogle Scholar
  13. 13.
    Santosh, K.C., Nattee, C., Lamiroy, B.: Spatial similarity based stroke number and order free clustering. In: 2010 12th International Conference on Frontiers in Handwriting Recognition, pp. 652–657. IEEE (2010)Google Scholar
  14. 14.
    Santosh, K.C., Nattee, C., Lamiroy, B.: Relative positioning of stroke-based clustering: a new approach to online handwritten Devanagari character recognition. Int. J. Image Graph. 12(02), 1250016 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Santosh, K.C., Wendling, L.: Character recognition based on non-linear multi-projection profiles measure. Front. Comput. Sci. 9(5), 678–690 (2015)CrossRefGoogle Scholar
  16. 16.
    Shih, F.Y., Cheng, S.: Adaptive mathematical morphology for edge linking. Inf. Sci. 167(1), 9–21 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tsang, P.W.M.: A genetic algorithm for affine invariant recognition of object shapes from broken boundaries. Pattern Recogn. Lett. 18(7), 631–639 (1997)CrossRefGoogle Scholar
  18. 18.
    Wei, L., Peng, D., et al.: An improved sequential edge linking model for contour detection in medical images. In: 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, pp. 3757–3760. IEEE (2009)Google Scholar
  19. 19.
    Whichello, A.P., Yan, H.: Linking broken character borders with variable sized masks to improve recognition. Pattern Recogn. 29(8), 1429–1435 (1996)CrossRefGoogle Scholar
  20. 20.
    Zhou, Y., Starkey, J., Mansinha, L.: Segmentation of petrographic images by integrating edge detection and region growing. Comput. Geosci. 30(8), 817–831 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Solapur UniversitySolapurIndia
  2. 2.Institute of Information Technology, DharwadHubliIndia

Personalised recommendations