Skip to main content

Segmentation of Lungs from Chest X Rays Using Firefly Optimized Fuzzy C-Means and Level Set Algorithm

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1036))

Abstract

Segmentation of lungs from chest x ray is a non trivial task required as a preprocessing step for detection of different diseases like cardiomelagy, tuberculosis, pneumonia. High accuracy in segmentation of lung results in high accuracy of detection of diseases from lungs. For the past four decades multiple techniques were proposed for automatic segmentation of lungs. In this paper, we propose a hybrid segmentation technique based on firefly optimized fuzzy c-means clustering algorithm. The output of the fuzzy c-means is given to level set to finalize the segmentation of the lungs. The performance of the proposed technique is evaluated using two public chest x ray datasets: JRST and Montgomery County. JRST contains 247 chest x-rays and MC dataset contains 138 chest x-rays. The Jaccard coefficient for the proposed segmentation technique is 95.1 which is on par with the state of art segmentation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3), 825–838 (2007)

    Article  Google Scholar 

  2. Candemir, S., Jaeger, S., Palaniappan, K., Antani, S., Thoma, G.: Graph-cut based automatic lung boundary detection in chest radiographs. In: IEEE Healthcare Technology Conference: Translational Engineering in Health and Medicine, pp. 31–34 (2012)

    Google Scholar 

  3. Candemir, S., et al.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 33(2), 577–590 (2014)

    Article  Google Scholar 

  4. Chondro, P., Yao, C.Y., Ruan, S.J., Chien, L.C.: Low order adaptive region growing for lung segmentation on plain chest radiographs. Neurocomputing 275, 1002–1011 (2018)

    Article  Google Scholar 

  5. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30(1), 9–15 (2006)

    Article  Google Scholar 

  6. Dai, W., et al.: Scan: structure correcting adversarial network for organ segmentation in chest x-rays. arXiv preprint arXiv:1703.08770 (2017)

  7. Giger, M.L., Chan, H.P., Boone, J.: Anniversary paper: history and status of cad and quantitative image analysis: the role of medical physics and AAPM. Med. Phys. 35(12), 5799–5820 (2008)

    Article  Google Scholar 

  8. Hegadi, R.S., Navale, D.I., Pawar, T.D., Ruikar, D.D.: Multi feature-based classification of osteoarthritis in knee joint x-ray images (Chap. 5). In: Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques. CRC Press (2019). ISBN 9780367139612

    Google Scholar 

  9. Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Accurate landmark-based segmentation by incorporating landmark misdetections. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1072–1075. IEEE (2016)

    Google Scholar 

  10. Ibragimov, B., Likar, B., Pernus, F., et al.: A game-theoretic framework for landmark-based image segmentation. IEEE Trans. Med. Imaging 31(9), 1761–1776 (2012)

    Article  Google Scholar 

  11. Jaeger, S., Candemir, S., Antani, S., Wáng, Y.X.J., Lu, P.X., Thoma, G.: Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475 (2014)

    Google Scholar 

  12. Karargyris, A., et al.: Combination of texture and shape features to detect pulmonary abnormalities in digital chest x-rays. Int. J. Comput. Assist. Radiol. Surg. 11(1), 99–106 (2016)

    Article  Google Scholar 

  13. Li, B.N., Chui, C.K., Chang, S., Ong, S.H.: Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput. Biol. Med. 41(1), 1–10 (2011)

    Article  Google Scholar 

  14. Li, X., Luo, S., Hu, Q., Li, J., Wang, D., Chiong, F.: Automatic lung field segmentation in x-ray radiographs using statistical shape and appearance models. J. Med. Imaging Health Inform. 6(2), 338–348 (2016)

    Article  Google Scholar 

  15. Mould, R.F.: A Century of X-rays and Radioactivity in Medicine: with Emphasis on Photographic Records of the Early Years. CRC Press, Boca Raton (1993)

    Google Scholar 

  16. Novikov, A.A., Lenis, D., Major, D., et al.: Fully convolutional architectures for multi-class segmentation in chest radiographs. IEEE Trans. Med. Imaging 37(8), 1865–1876 (2018)

    Article  Google Scholar 

  17. Rao, N.G., Kumar, V.V., Krishna, V.V.: Texture based image indexing and retrieval. Int. J. Comput. Sci. Network Secur. 9(5), 206–210 (2009)

    Google Scholar 

  18. Rao, N.G., Sravani, T., Kumar, V.V.: OCRM: optimal cost region matching similarity measure for region based image retrieval. Int. J. Multimedia Ubiquit. Eng. 9(4), 327 (2014)

    Article  Google Scholar 

  19. Ruikar, D.D., Hegadi, R.S., Santosh, K.C.: A systematic review on orthopedic simulators for psycho-motor skill and surgical procedure training. J. Med. Syst. 42(9), 168 (2018)

    Article  Google Scholar 

  20. Ruikar, D.D., Santosh, K.C., Hegadi, R.S.: Automated fractured bone segmentation and labeling from CT images. J. Med. Syst. 43(3), 60 (2019). https://doi.org/10.1007/s10916-019-1176-x

    Article  Google Scholar 

  21. Ruikar, D.D., Santosh, K.C., Hegadi, R.S.: Segmentation and analysis of CT images for bone fracture detection and labeling (Chap. 7). In: Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques. CRC Press (2019). ISBN 9780367139612

    Google Scholar 

  22. Ruikar, D.D., Sawat, D.D., Santosh, K.C., Hegadi, R.S.: 3D imaging in biomedical applications: a systematic review (Chap. 8). In: Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques. CRC Press (2019). ISBN 9780367139612

    Google Scholar 

  23. Santosh, K., Antani, S.: Automated chest X-ray screening: can lung region symmetry help detect pulmonary abnormalities? IEEE Trans. Med. Imaging 37(5), 1168–1177 (2018)

    Article  Google Scholar 

  24. Santosh, K., et al.: Automatically detecting rotation in chest radiographs using principal riborientation measure for quality control. Int. J. Pattern Recogn. Artifi. Intell. 29(02), 1557001 (2015)

    Article  MathSciNet  Google Scholar 

  25. Santosh, K., Vajda, S., Antani, S., Thoma, G.R.: Edge map analysis in chest x-rays for automatic pulmonary abnormality screening. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1637–1646 (2016)

    Article  Google Scholar 

  26. Seghers, D., Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Minimal shape and intensity cost path segmentation. IEEE Trans. Med. Imaging 26(8), 1115–1129 (2007)

    Article  Google Scholar 

  27. Sethian, J.A., et al.: Level set methods and fast marching methods. J. Comput. Inform. Technol. 11(1), 1–2 (2003)

    Article  Google Scholar 

  28. Shao, Y., Gao, Y., Guo, Y., Shi, Y., Yang, X., Shen, D.: Hierarchical lung field segmentation with joint shape and appearance sparse learning. IEEE Trans. Med. Imaging 33(9), 1761–1780 (2014)

    Article  Google Scholar 

  29. Shi, Y., et al.: Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Trans. Med. Imaging 27(4), 481–494 (2008)

    Article  Google Scholar 

  30. Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174(1), 71–74 (2000)

    Article  Google Scholar 

  31. Vajda, S., et al.: Feature selection for automatic tuberculosis screening in frontal chest radiographs. J. Med. Syst. 42(8), 146 (2018)

    Article  Google Scholar 

  32. Van Ginneken, B., Romeny, B.T.H., Viergever, M.A.: Computer-aided diagnosis in chest radiography: a survey. IEEE Trans. Med. Imaging 20(12), 1228–1241 (2001)

    Article  Google Scholar 

  33. Van Ginneken, B., Stegmann, M.B., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med. Image Anal. 10(1), 19–40 (2006)

    Article  Google Scholar 

  34. Wang, C.: Segmentation of multiple structures in chest radiographs using multi-task fully convolutional networks. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10270, pp. 282–289. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59129-2_24

    Chapter  Google Scholar 

  35. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3462–3471. IEEE (2017)

    Google Scholar 

  36. Yang, W., et al.: Lung field segmentation in chest radiographs from boundary maps by a structured edge detector. IEEE J. Biomed. Health Inform. 22(3), 842–851 (2018)

    Article  Google Scholar 

  37. Zohora, F.T., Antani, S., Santosh, K.: Circle-like foreign element detection in chest x-rays using normalized cross-correlation and unsupervised clustering. In: Medical Imaging 2018: Image Processing, vol. 10574, p. 105741V. International Society for Optics and Photonics (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebenezer Jangam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jangam, E., Rao, A.C.S. (2019). Segmentation of Lungs from Chest X Rays Using Firefly Optimized Fuzzy C-Means and Level Set Algorithm. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1036. Springer, Singapore. https://doi.org/10.1007/978-981-13-9184-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9184-2_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9183-5

  • Online ISBN: 978-981-13-9184-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics