Skip to main content

Diabetes Detection Using Principal Component Analysis and Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1036))

Abstract

Data mining is a growing discipline in the medical field that aims to extract knowledge relevant large amounts of data. It uses tools from statistics, artificial intelligence, and optimization techniques, etc. This paper present the detection of diabetes on the basis of data taken form UCI repository (PIMA), with help of neural network and principal component analysis. Data training and testing perform according to k fold verification and NN based approach yields 99% of accuracy. Further PCA NN approach is proposed for dimension reduction techniques and it gives accuracy 98.7% marginally low from NN based approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  1. Zeki, T.S., Malakooti, M.V., Ataeipoor, Y., Tabibi, S.T.: An expert system for diabetes diagnosis. Am. Acad. Sch. Res. J. 4(5), 1 (2012)

    Google Scholar 

  2. American Diabetes Association: Classification and diagnosis of diabetes. Diabetes Care 38(Suppl. 1), S8–S16 (2015)

    Article  Google Scholar 

  3. Lavery, L.A., Armstrong, D.G., Murdoch, D.P., Peters, E.J., Lipsky, B.A.: Validation of the infectious diseases society of America’s diabetic foot infection classification system. Clin. Infect. Dis. 44(4), 562–565 (2007)

    Article  Google Scholar 

  4. American Diabetes Association: Standards of medical care in diabetes—2014. Diabetes Care 37(Suppl. 1), S14–S80 (2014)

    Article  Google Scholar 

  5. Amato, F., et al.: Artificial neural networks in medical diagnosis. J. Appl. Biomed. 11(2), 47–58 (2013)

    Article  Google Scholar 

  6. Jayalakshmi, T., Santhakumaran, A.: A novel classification method for diagnosis of diabetes mellitus using artificial neural networks. In: 2010 International Conference on Data Storage and Data Engineering (DSDE), pp. 159–163. IEEE, February 2010

    Google Scholar 

  7. Ahmadlou, M., Adeli, H.: Enhanced probabilistic neural network with local decision circles: a robust classifier. Integr. Comput.-Aided Eng. 17(3), 197–210 (2010)

    Article  Google Scholar 

  8. Karegowda, A.G., Manjunath, A.S., Jayaram, M.A.: Application of genetic algorithm optimized neural network connection weights for medical diagnosis of pima Indians diabetes. Int. J. Soft Comput. 2(2), 15–23 (2011)

    Article  Google Scholar 

  9. Iyer, A., Jeyalatha, S. Sumbaly, R.: Diagnosis of diabetes using classification mining techniques, arXiv preprint (2015). arXiv:1502.03774

    Article  Google Scholar 

  10. Durairaj, M., Kalaiselvi, G.: Prediction of diabetes using soft computing techniques-a survey. Int. J. Sci. Technol. Res. 4(3), 190–192 (2015)

    Google Scholar 

  11. Erkaymaz, O., Ozer, M.: Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes. Chaos, Solitons Fractals 83, 178–185 (2016)

    Article  MathSciNet  Google Scholar 

  12. Erkaymaz, O., Ozer, M., Perc, M.: Performance of small-world feedforward neural networks for the diagnosis of diabetes. Appl. Math. Comput. 311, 22–28 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Mahajan, A., Kumar, S. Bansal, R.: Diagnosis of diabetes mellitus using PCA and genetically optimized neural network. In: 2017 International Conference on Computing, Communication and Automation (ICCCA), pp. 334–338. IEEE, May 2017

    Google Scholar 

  14. Mangathayaru, N., Mathura Bai, B., Srikanth, P.: Clustering and classification of effective diabetes diagnosis: computational intelligence techniques using PCA with kNN. In: Satapathy, S.C., Joshi, A. (eds.) ICTIS 2017. SIST, vol. 83, pp. 426–440. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63673-3_52

    Chapter  Google Scholar 

  15. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  16. Minsky, M., Papert, S.A., Bottou, L.: Perceptrons: An Introduction to Computational Geometry. MIT press, Cambridge (2017)

    Book  Google Scholar 

  17. Widrow, B., Hoff, M.E.: Adaptive switching circuits, No. TR-1553–1. Stanford Univ CA Stanford Electronics Labs (1960)

    Google Scholar 

  18. Werbos, P.J.: The Roots of Backpropagation: from Ordered Derivatives to Neural Networks and Political Forecasting, vol. 1. Wiley, Hoboken (1994)

    Google Scholar 

  19. Rumelhalt, D.E.: Learning internal representations by error propagation. Parallel Distrib. process. 1, 318–362 (1986)

    Google Scholar 

  20. Le Cun, Y.: Learning process in an asymmetric threshold network. In: Bienenstock, E., Soulié, F.F., Weisbuch, G. (eds.) Disordered Systems and Biological Organization. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 20, pp. 233–240. Springer, Heidelberg (1986). https://doi.org/10.1007/978-3-642-82657-3_24

    Chapter  Google Scholar 

  21. Tetko, I.V., Livingstone, D.J., Luik, A.I.: Neural network studies. 1. comparison of overfitting and overtraining. J. Chem. Inf. Comput. Sci. 35(5), 826–833 (1995)

    Article  Google Scholar 

  22. Pima, A.F., Asuncion, A.: Pima Indians Diabetes Data Set. UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences (2010). http://archive.ics.uci.edu/ml

  23. Balakrishnan, S., Narayanaswamy, R.: Feature selection using fcbf in type ii diabetes databases. Int. J. Comput. Internet Manag. 17(1), 50–58 (2009)

    Google Scholar 

  24. Karegowda, A.G., Manjunath, A.S., Jayaram, M.A.: Comparative study of attribute selection using gain ratio and correlation based feature selection. Int. J. Inf. Technol. Knowl. Manag. 2(2), 271–277 (2010)

    Google Scholar 

  25. Kabir, M.M., Islam, M.M., Murase, K.: A new wrapper feature selection approach using neural network. Neurocomputing 73(16–18), 3273–3283 (2010)

    Article  Google Scholar 

  26. Huang, C.L., Wang, C.J.: A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31(2), 231–240 (2006)

    Article  Google Scholar 

  27. Wang, Y., Li, L., Ni, J., Huang, S.: Feature selection using tabu search with long-term memories and probabilistic neural networks. Pattern Recogn. Lett. 30(7), 661–670 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Haritha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haritha, R., Sureshbabu, D., Sammulal, P. (2019). Diabetes Detection Using Principal Component Analysis and Neural Networks. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1036. Springer, Singapore. https://doi.org/10.1007/978-981-13-9184-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9184-2_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9183-5

  • Online ISBN: 978-981-13-9184-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics