Advertisement

IoT-Enabled Agricultural System Applications, Challenges and Security Issues

  • Padmalaya NayakEmail author
  • Kayiram Kavitha
  • Ch. Mallikarjuna Rao
Chapter
Part of the Studies in Big Data book series (SBD, volume 63)

Abstract

The growing demand of Internet of Things (IoT) brings many more paradigms in several areas of applications such as smart city, smart village, smart energy management, smart agriculture, smart health care, etc. It aims at integrating the virtual world along with the physical world by using the Internet as communication medium. The IoT could be practically feasible with several existing technologies such as wireless sensor network (WSN), radio frequency identification (RFID), middleware technologies, cloud computing and end-user applications. The technologies associated with the IoTs have great impact on precision agriculture or smart farming as well as global economy. This chapter aims at agricultural applications where it utilises modern technologies that benefit the farmers with decision tools and reduces manual labouring cost. The seamless integration of products, knowledge and services through IoT maximises the volume of productivity, product quality and profit of business. Even though current surveys on the IoT in agriculture focuses on the challenges, constraints, benefits and pitfalls for large scale in the agricultural food sector, all are presented in isolation to each other. So, keeping all in these in mind, a brief discussion on challenges, benefits, constraints, future trends and security issues are presented in this book chapter.

Keywords

IoT Smart farming IoT-enabled architecture 

References

  1. 1.
    Xu, L.D., et al.: Internet of Things in industry: a survey. IEEE Trans. Ind. Inf. 10(4), 2233–2243 (2014)CrossRefGoogle Scholar
  2. 2.
    Pujari, J.D., et al.: Image processing-based detection of Fungai diseases in plants. Proc. Comput. Sci. 46, 1802–1808 (2015). ISSN: 1877-0509CrossRefGoogle Scholar
  3. 3.
    Machina: Accessed on 1 Oct 2017 [On-line]. Available: https://machinaresearch.com/reports
  4. 4.
    Tpngke, F.: Smart agriculture based on cloud computing and IoT. J. Conver. Inf. Technol 8(2) (2013)Google Scholar
  5. 5.
    Ngu, A.H., Gutierrez, M., Metsis, V., Nepal, S., Sheng, Q.Z.: IoT middleware: a survey on issues and enabling technologies. IEEE Int. Things J. 4(1), 1–20 (2017)CrossRefGoogle Scholar
  6. 6.
    Liu, C.H., Yang, B., Liu, T.: Efficient naming, addressing and profile services in Internet of Things sensory envirnoments. Ad Hoc Netw. 18, 85–101 (2014)CrossRefGoogle Scholar
  7. 7.
    Atzori, L., Lera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)zbMATHCrossRefGoogle Scholar
  8. 8.
    Yan-e, D.: Design of intelligent agriculture management information system based on IoT. In: 2011 Fourth International Conference on Intelligent Computation Technology and Automation, vol. 1, pp. 1045–1049, Mar 2011Google Scholar
  9. 9.
    Wu, Z., Li, S., Yu, M., Wu, J.: The actuality of agriculture Internet of Things for applying and popularizing in China. In: Proceedings of the International Conference on Advances in Mechanical Engineering and Industrial Informatics (EII’15) (2015)Google Scholar
  10. 10.
    Parameswaran, G., Sivaprasath, K.: Arduino based smart drip irrigation system using Internet of Things. Int. J. Eng. Sci. Comput. 6, 5518–5521 (2016).  https://doi.org/10.4010/2016.1348CrossRefGoogle Scholar
  11. 11.
    Muhammad, Abubakr, Haider, Bilal, Ahmad, Zahoor: IoT enabled analysis of irrigation rosters in the Indus basin irrigation system. Proc. Eng. 154, 229–235 (2016)CrossRefGoogle Scholar
  12. 12.
    Fang, S., Da Xu, L., Zhu, Y., Ahati, J., Pei, H., Yan, J., Liu, Z.: An integrated system for regional environmental monitoring and management based on Internet of Things. IEEE Trans. Ind. Inf. 10(2), 1596–1605 (2014)CrossRefGoogle Scholar
  13. 13.
    Dursun, M., Ozden, S.A.: A wireless application of drip irrigation automation supported by soil moisture sensors. Sci. Res. Essays 6, 1573–1582 (2011)Google Scholar
  14. 14.
    Khattab, A., Abdelgawad, A., Yelmarthi, K.: Design and implementation of a cloud-based IoT scheme for precision agriculture. In: 28th International Conference on Microelectronics, pp. 201–204 (2016)Google Scholar
  15. 15.
    Kodali, R.K., Sahu, A.: An IoT based weather information prototype using WeMos. In: 2nd International Conference on Contemporary Computing and Informatics, pp. 612–616 (2013)Google Scholar
  16. 16.
    Bing, F.: The research of IOT of agriculture based on three layers architecture. In: 2nd International Conference on Cloud Computing and Internet of Things, pp. 162–165 (2016) Google Scholar
  17. 17.
    Edwards-Murphy, F., Magno, M., Whelan, P.M., O’Halloran, J., Popovici, E.M.: B+WSN: smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring. Comput. Electron. Agric. 124, 211–219 (2016).  https://doi.org/10.1016/j.compag.2016.04.008CrossRefGoogle Scholar
  18. 18.
    Ding, Q., Ma, D., Li, D., Zhao, L.: Design and implementation of a sensors node oriented water quality monitoring in aquaculture. Sens. Lett. 8(1), 70–74 (2010)CrossRefGoogle Scholar
  19. 19.
    Bang, J., Lee, I., Noh, M., Lim, J., Oh, H.: Design and implementation of a smart control system for poultry Breeding’s optimal LED environment. Int. J. Control Autom. 7(2), 99–108 (2014).  https://doi.org/10.14257/ijca.2014.7.2.10CrossRefGoogle Scholar
  20. 20.
    Vernandhes, W., Salahuddin, N.S., Kowanda, A., Sari, S.P.: Smart aquaponic with monitoring and control system based on IoT. In: 2017 Second International Conference on Informatics and Computing (ICIC), pp. 1–6. IEEE (2017)Google Scholar
  21. 21.
    Brewster, C., et al.: IoT in agriculture: designing a Europe-wide large-scale pilot. IEEE Commun. Mag. 55(9), 26–33 (2017)CrossRefGoogle Scholar
  22. 22.
    CLAAS: Accessed on 20 Sept 2017 [Online]. Available: http://www.claasofamerica.com/
  23. 23.
    Yang, K., Liu, H., Wang, P., Meng, Z., Chen, J.: Convolutional neural network-based automatic image recognition for agricultural machinery. Int. J. Agric. Biol. Eng. 11(4), 200–206 (2018)Google Scholar
  24. 24.
    Karim, F., Karim, F.: Monitoring system using web of things in precision agriculture. Proc. Comput. Sci. 110, 402–409 (2017)CrossRefGoogle Scholar
  25. 25.
    Johannes, A., et al.: Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 138, 200–209 (2017). ISSN: 0168-1699.  https://doi.org/10.1016/j.compag.2017.04.013. http://dx.doi.org/10.1016/j.compag.2017.04.013CrossRefGoogle Scholar
  26. 26.
    Petrellis, N.: A smart phone image processing application for plant disease diagnosis. In: 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4 (2017). ISSN: 1613-0073.  https://doi.org/10.1109/mocast.2017.7937683. http://ieeexplore.ieee.org/document/7937683/
  27. 27.
    Kawakami, Y., et al.: Rice cultivation support system equipped with water-level sensor system. IFAC-PapersOnLine 49(16), 143–148 (2016). ISSN: 2405-8963.  https://doi.org/10.1016/j.ifacol.2016.10.027. http://dx.doi.org/10.1016/j.ifacol.2016.10.027CrossRefGoogle Scholar
  28. 28.
    Sarangi, S., Umadikar, J., Kar, S.: Automation of agriculture support systems using Wisekar: case study of a crop-disease advisory service. Comput. Electron. Agric. 122, 200–210 (2016)CrossRefGoogle Scholar
  29. 29.
    Rodriguez, S., Gualotuna, T., Grilo, C.: A system for the monitoring and predicting of data in precision agriculture in a rose greenhouse based on wireless sensor networks. Proc. Comput. Sci. 121, 306–313 (2017)CrossRefGoogle Scholar
  30. 30.
    Dan, L., et al.: Intelligent agriculture greenhouse environment monitoring system based on IOT technology. In: 2015 International Conference on Intelligent Transportation, Big Data and Smart City (ICITBS). IEEE (2015)Google Scholar
  31. 31.
    Akkaş, M.A., Sokullu, R.: An IoT-based greenhouse monitoring system with Micaz motes. Proc. Comput. Sci. 113, 603–608 (2017)CrossRefGoogle Scholar
  32. 32.
    Jagdale, T., Mali, M.B.: Greenhouse wireless network monitoring and management using IoT. Int. J. Innov. Res. Electr. Electr. Instrum. Control Eng. (2016)Google Scholar
  33. 33.
    Birla, A., Biral, A., Centenaro, M., Zanella, A., Vangelista, L., Zorzi, M.: The challenges of M2M massive access in wireless cellular networks. Digital Commun. Netw. 1(1), 1–19 (2015)CrossRefGoogle Scholar
  34. 34.
    IERC: European Research Cluster on the Internet of Things. Technical report [Online]. Available at http://www.internet-of-things-research.eu/pdf/IERC_position_paper_IoT_semantic_interoperability_final.pdf
  35. 35.
    Tayur, V.M., Suchitra, R.: Review of interoperability approaches in application layer of Internet of Things. In: 2017 International Conference on innovation Mechanisms for Industry Applications (ICIMIA), pp. 322–326, Feb 2017Google Scholar
  36. 36.
    Open connectivity: Accessed on 20 Sept 2017 [On-line]. Available: https://openconnectivity.org/
  37. 37.
    IFTTT: Accessed on 20 Sept 2017 [Online]. Available: https://iftt.com/
  38. 38.
    Zhao, J.C., Zhang, J.F., Feng, Y., Guo, J.X.: The study and application of the IoT technology in agriculture. In: 2010 3rd International Conference on Computer Science and Information Technology, vol. 2, pp. 462–465, July 2010Google Scholar
  39. 39.
    Shinde, T.A., Prasad, J.R.: IoT based animal health monitoring with naive bayes classification. IJETT 1(2) (2017)Google Scholar
  40. 40.
    Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C.: Food security: the challenge of feeding 9 billion people. Science 327(5967), 812–818 (2010)CrossRefGoogle Scholar
  41. 41.
    Nelleman, C., et al.: The environmental food crisis. In: The Environment’s Role in Averting Future Food Crises. A UNEP Rapid Response Assessment. United Nations Environment Program, GRID-Arendal, Arendal, Norway (2009)Google Scholar
  42. 42.
    Deepak, V., Megha, T., Prithvi, G.H., Syed, S.A., Sharavana, K.: Cold storage management system for farmers based on IoT. Int. J. Recent Trends Eng. Res. 3(5), 556–561 (2017)CrossRefGoogle Scholar
  43. 43.
    Centenaro, M., et al.: Long range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wireless Commun. 23(5), 60–67 (2016)CrossRefGoogle Scholar
  44. 44.
    Adhikary, A., Lin, X., Wang, Y.P.E.: Performance evaluation of NB-IoT coverage. In: 2016 IEEE 8th Vehicular Technology Conference (VTC-Fall), pp. 1–5, Sept 2016Google Scholar
  45. 45.
    Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)CrossRefGoogle Scholar
  46. 46.
    Bo, Y., Wang, H.: The application of cloud computing and the Internet of Things in agriculture and forestry. In: 2011 International Joint Conference on Service Sciences, May 2011, pp. 168–172Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Padmalaya Nayak
    • 1
    Email author
  • Kayiram Kavitha
    • 1
  • Ch. Mallikarjuna Rao
    • 1
  1. 1.Gokaraju Rangaraju Institute of Engineering and TechnologyHyderabadIndia

Personalised recommendations