Advertisement

Solar-Powered Automated IoT-Based Drip Irrigation System

  • Ananya BarmanEmail author
  • Biswarup Neogi
  • Souvik Pal
Chapter
  • 461 Downloads
Part of the Studies in Big Data book series (SBD, volume 63)

Abstract

In India the main economic structure is based on the agriculture sector. Worldwide, India is in 2nd position regarding farm output. Irrigation is an important component of agriculture. In most of the cases, conventional electricity or diesel-generated electricity is used by the farmers to run the motors and pumps manually, resulting in over irrigation and wastage of water. The use of conventional energy resources like petrol, diesel, coal is expensive and also creates air pollution and noise. Hence nowadays maximum research works are focusing on utilization of renewable energy resources, which is widely available, like solar energy. Solar-powered irrigation system is not only eco friendly but also economically a cheap process. This process minimizes the operation and maintenance cost, which is 2–4 times higher than a solar photovoltaic (PV) pump. In most of the developing countries, agriculture is solely dependent on rain water and thus poorly affected in the season of summer. In India there are also some of the places where water availability is very low which has detrimental effects on crop production. Hence nowadays wireless sensors were used to analyze the moisture level of the field and to automate the irrigation process. An automated irrigation system refers a system, with a minimum of manual requirement. All types of irrigation process like drip irrigation, sprinkler irrigation or surface irrigation can be automated by using timers, sensors or computers or mechanical appliances. In this automated system, some standard data regarding the moisture level of a field is predefined for a specific crop. The sensor first transmits the data through a microcontroller to the server after a specific time interval. If the amount of moisture of the field is below the standard value of the database, the microcontroller will trigger the pump for watering the plants till the predefined moisture level. While the moisture level of the field reaches the threshold limit, the pump will automatically stop watering through microcontroller. The sensor analyzes the moisture level by monitoring the field in a specific time slot and store the data in database. Nowadays there are so many advancements taking place in sensing and communication technologies. Thus in today’s life solar-powered automated drip irrigation system can solve the problems of using conventional energy resources for running the irrigation system and also prevents the water wastage by continuous monitoring of the field.

Keywords

Drip irrigation Renewable energy Solar panel Sensor Microcontroller 

References

  1. 1.
    Plant Growth Factors: Temperature, Colorado State University, Available (as on 14-09-2015) at: http://www.ext.colostate.edu/mg/Gardenno-tes/143.html#heat
  2. 2.
    Plant Growth Factors: Water, Colorado State University, Available (as on 14-09-2015) at: http://www.ext.colostate.edu/-mg/Gardennotes/144.html
  3. 3.
    Bigas, H. (ed.): The global water crisis: addressing an urgent security issue. Paper for inter action council, Hamilton, Canada: UNO-INWEH, 2011–12Google Scholar
  4. 4.
    Dursun, M., Ozden, S.: A prototype of PC based remote control of irrigation. In: International Conference on Environmental Engineering and Application (ICEEA), pp. 255–258. (IEEE Catalog Number: CFP1020L-PRT) (2010)Google Scholar
  5. 5.
    Kim, Y., Evans, R.G.: Software design for wireless sensor-based site-specific irrigation. Comput. Electron. Agric. 66, 159–165 (2009)CrossRefGoogle Scholar
  6. 6.
    Sezen, S.M., Celikel, G., Yazar, A., Tekin, S., Kapur, B.: Effect of irrigation management on yield and quality of tomatoes grown in different soilless media in a glasshouse. Sci. Res. Essay 5(1), 41–48 (2010)Google Scholar
  7. 7.
    Balendonck, J., Hemming, J., Van, T. B., Pardossi, A., Incrocci, L., Marzialetti, P.: Sensors and wireless sensor networks for irrigation management under deficit conditions (FLOW-AID). In: International Conference on Agricultural Engineering (AgEng2008). Conference Proceeding, p. 19 (2008)Google Scholar
  8. 8.
    Ngaira, J.K.W.: Impact of climate change on agriculture in Africa by 2030. Sci. Res. Essays 2(7), 238–243 (2007)Google Scholar
  9. 9.
    Lopez, R.J.A., Sotoa, F., Suardiaza, F., Sancheza, P., Iborraa, A., Verab, J.A.: Wireless sensor networks for precision horticulture in southern spain. Comput. Electron. Agric. 68, 25–35 (2009)CrossRefGoogle Scholar
  10. 10.
    Kim, Y., Evans, R.G., Iversen, W.M.: Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Trans. Instrum. Meas. 57(7), 1379–1387 (2008)CrossRefGoogle Scholar
  11. 11.
    Coates, R.W., Delwiche, M.J., Brown, P.H.: Control of individual micro sprinklers and fault detection strategies. Precision Agric. 7, 85–99 (2006)CrossRefGoogle Scholar
  12. 12.
    Doraiswamy, P.C., Hatfield, J.L., Jackson, T.J., Akhmedov, B., Prueger, J., Stern, A.: Crop condition and yield simulations using Landsat and MODIS. Remote. Sens. Environ. 92, 548–559 (2004)CrossRefGoogle Scholar
  13. 13.
    Coates, R.W., Delwiche, M., Brown, P.: Precision Irrigation in orchards: development of a spatially variable micro sprinkler system. In: Information and Technology for Sustainable Fruit and Vegetable Production (FRUTIC), pp. 611–624 (2005)Google Scholar
  14. 14.
    Jacobson, B.K., Jones, P.H., Jones, J.W., Paramore, J.A.: Real-time greenhouse monitoring and control with an expert system. Comput. Electron. Agric. 3, 273–285 (1989)CrossRefGoogle Scholar
  15. 15.
    Meron, M., Assaf, R., Bravdo, B., Wallach, R., Hallel, R., Levin, A., Dahan, I.: Soil sensor actuated micro irrigation of apples. In: Proceedings of the 5th International Micro Irrigation Congress, ASABE, pp. 486–491 (1995)Google Scholar
  16. 16.
    Stone, K.C., Smajstrla, A.G., Zazueta, F.S.: Microcomputer-based data acquisition system for continuous soil water potential measurements. Soil Crop Sci. Soc. Fla. Proc. 44, 49–53 (1985)Google Scholar
  17. 17.
    Testezlaf, R., Zazueta, F.S., Yeager, T.H.: A real-time irrigation control system for greenhouses. Appl. Eng. Agric. 13(3), 329–332 (1997)CrossRefGoogle Scholar
  18. 18.
    Zazueta, F.S., Smajstrla, A.G.: Microcomputer-based control of irrigation systems. Appl. Eng. Agric. 8(5), 593–596 (1992)CrossRefGoogle Scholar
  19. 19.
    Abreu, V.M., Pereira, L.S.: Sprinkler irrigation systems design using ISAMim. pp. 022254 (2002)Google Scholar
  20. 20.
    Kim, Y., Evans, R.G., Iversen, W.M.: Evaluation of closed-loop site-specific irrigation with wireless sensor network. J. Irrig. Drain. Eng. 135(1), 25–31 (2009)CrossRefGoogle Scholar
  21. 21.
    Oksanen, T., Ohman, M., Miettinen, M., Visala, A.: Open configurable control system for precision farming. Automation Technology for Off-Road Equipment, Proceedings, 701P1004 (2004)Google Scholar
  22. 22.
    Zhang, Z.: Investigation of wireless sensor networks for precision agriculture. In: ASAE Annual International Meeting, pp. 041154 (2004)Google Scholar
  23. 23.
    Torre-Neto, A., Schueller, J.K., Haman, D.Z.: Networked sensing and valve actuation for spatially-variable microsprinkler irrigation. In: ASAE Annual International Meeting, pp. 001158 (2000)Google Scholar
  24. 24.
    Miranda, F.R., Yoder, R., Wilkerson, J.B.: A site-specific irrigation control system. In: ASAE Annual International Meeting, pp. 031129 (2003)Google Scholar
  25. 25.
    Wall, R.W., King, B.A.: Incorporating plug and play technology into measurement and control systems for irrigation management. In: ASAE Annual International Meeting, pp. 042189 (2004)Google Scholar
  26. 26.
    Perry, C.D., Dukes, M.D., Harrison, K.A.: Effects of variable-rate sprinkler cycling on irrigation uniformity. In: ASAE Annual International Meeting, pp. 041117 (2004)Google Scholar
  27. 27.
    Damas, M., Prados, A.M., Gomez, F., Olivares, G.: HidroBus® system: fieldbus for integrated management of extensive areas of irrigated land. Microprocessors Microsyst. 25, 177–184 (2001)CrossRefGoogle Scholar
  28. 28.
    Panchard, J., Rao, S., Prabhakar, T.V., Jamadagni, H.S., Hubaux, J.P.: COMMON-sense net: improved water management for resource-poor farmers via sensor networks. ICTD 2006 Conference (2006)Google Scholar
  29. 29.
    Wang, N., Zhang, N., Wang, M.: Wireless sensors in agriculture and food industry—Recent development and future perspective. Comp. Electron. Agric. 50, 1–14 (2006)CrossRefGoogle Scholar
  30. 30.
    Baggio, A.: Wireless sensor networks in precision agriculture. In: On-line Proceeding of the Workshop on Real-World Wireless Sensor Networks, pp. 50–51 (2005)Google Scholar
  31. 31.
    Coates, R.W., Delwiche, M.J., Brown, P.H.: Design of a system for individual micro sprinkler control. Trans. ASABE 49(6), 1963–1970 (2006)CrossRefGoogle Scholar
  32. 32.
    Mendoza-Jasso, J., Vargas, G.O., Miranda, R.C., Ramos, E.V., Garrido, A.Z., Ruiz, G.H.: FPGA-based real-time remote monitoring system. Comput. Electron. Agric. 49, 272–285 (2005)CrossRefGoogle Scholar
  33. 33.
    Camilli, A., Cugnasca, C.E., Saraiva, A.M., Hirakawa, A.R., Corrêa, L.P.: From wireless sensor to field mapping: anatomy of an application for precision agriculture. Comput. Electron. Agric. 58, 25–36 (2007)CrossRefGoogle Scholar
  34. 34.
    Vellidis, G., Tucker, M., Perry, C., Kvien, C., Bednarz, C.: A real-time wireless smart sensor array for scheduling irrigation. Comput. Electron. Agric. 61, 44–50 (2008)CrossRefGoogle Scholar
  35. 35.
    Siuli Roy, A.D., Bandyopadhyays, S.: Agro-sense: Precision agriculture using sensor-based wireless mesh networks. Innovations in NGN: Future Network and Services. In: Proceedings of the First ITU-T Kaleidoscope Academic Conference (K-INGN 2008), pp. 383–388 (2008)Google Scholar
  36. 36.
    Engman, E.T., Chauhan, N.: Status of microwave soil moisture measurements with remote sensing. Remote. Sens. Environ. 51, 189–198 (1995)CrossRefGoogle Scholar
  37. 37.
    Ulaby, F.T., Dubois, P.C., Zyl, J.J.V.: Radar mapping of surface soil moisture. J. Hydrol. 184, 57–84 (1996)CrossRefGoogle Scholar
  38. 38.
    Jackson, T.J., Vine, D.L., Hsu, A.Y., Oldak, A., Starks, P., Swift, C., Isham, J., Haken, M.: Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sensing 37, 2136–2151 (1999)CrossRefGoogle Scholar
  39. 39.
    Thelen, J., Goense, D., Langendoen, K.: Radio wave propagation in potato fields. In: First Workshop on Wireless Network Measurements (co-located with WiOpt2005), pp. 1–4 (2005)Google Scholar
  40. 40.
    Miranda, F.R., Yoder, R.E., Wilkerson, J.B., Odhiamboc, L.O.: An autonomous controller for site-specific management of fixed irrigation systems. Comput. Electron. Agric. 48, 183–197 (2005)CrossRefGoogle Scholar
  41. 41.
    Johnson, A.I.: Methods of measuring soil moisture in the field. U. S. Geological Survey (1992). (Third Reprint)Google Scholar
  42. 42.
    Morris, M.: NCAT energy specialist, Soil moisture monitoring: low-cost tools and methods. ATTRA (2006)Google Scholar
  43. 43.
    Blonquist, J.M., Jones, S.B., Robinson, D.A.: Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor. Agric. Water Manag. 84, 153–165 (2006)CrossRefGoogle Scholar
  44. 44.
    Thompson, R.B., Gallardo, M., Valdez, L.C., Fernández, M.D.: Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. Agric. Water Manag. 88, 147–158 (2007)CrossRefGoogle Scholar
  45. 45.
    Seah, W.K.G., Eu, Z.A., Tan, H.P.: Wireless sensor networks powered by ambient energy harvesting (wsn-heap)—Survey and challenges. In: Proceeding 1st International Conference on Wireless VITAE, pp. 1–5, May 2009Google Scholar
  46. 46.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw., 52(12):2292–2330 (2008)CrossRefGoogle Scholar
  47. 47.
    Dias, P.C., Roque, W., Ferreira, E.C., Siqueira Dias, J.A.: A high sensitivity single-probe heat pulse soil moisture sensor based on a single NPN junction transistor. Comput. Electron. Agric. 96, 139–147 (2013)CrossRefGoogle Scholar
  48. 48.
    Xiao, D., Feng, J., Wang, N., Luo, X., Hu, Y.: Integrated soil moisture and water depth sensor for paddy fields. Comput. Electron. Agric. 98, 214–221 (2013)CrossRefGoogle Scholar
  49. 49.
    Montoya, F.G., Gómez, J., Cama, A., Sierra, A.Z., Martínez, F., De La Cruz, J.L., Agugliaro, F.M.: A monitoring system for intensive agriculture based on mesh networks and the android system. Comput. Electron. Agric. 99, 14–20 (2013)CrossRefGoogle Scholar
  50. 50.
    Bartlett, A.C., Andales, A.A., Arabi, M., Bauder, T.A.: A smartphone app to extend use of a cloud-based irrigation scheduling tool. Comput. Electron. Agric. 111, 127–130 (2015)CrossRefGoogle Scholar
  51. 51.
    Cardenas-Lailhacar, B., Dukes, M.D.: Precision of soil moisture sensor irrigation controllers under field conditions. Agric. Water Manag. 97, 666–672 (2010)CrossRefGoogle Scholar
  52. 52.
    Shabadi, L., Patil, N., Nikita., M.., Shruti, J., Smitha, P., Swati. C.: Irrigation control system using android and GSM for efficient use of water and power. IJARCSSE 4(7): 607–611 (2014). www.ijarcsse.com
  53. 53.
    Rashid, H., sahgal J.L., Anshulgangwar Md.R.: Control of irrigation automatically by using wireless sensor network. IJSCE, 3(1) (2013). ISSN: 2231-2307Google Scholar
  54. 54.
    Balendonck et al., 2008: Ngaira, (2007)Google Scholar
  55. 55.
    Water Management System for Agricultural Sector Prof. Dnyaneshwar Natha Wavhal*, Prof. Sneha Ghumatkar #, Prof. Manish Giri, Prof. Nikhil Kumar B.S.*Dept. of Computer Engineering Jaihind College of Engineering Kuran, University of Pune, Maharashtra, INDIAGoogle Scholar
  56. 56.
    Rajpal, A., Jain, S., Khare, Nistha., Shukla, K.A.: Microcontroller based Automatic Irrigation System with Moisture Sensors. In: Proceedings of the International Conference on Science and Engineering, pp. 94–96 (2011)Google Scholar
  57. 57.
    “Automatic Irrigation Management System”, (October 29, 2011). wwu.edu/changj7/project/docs/proj%20description.pdf
  58. 58.
    “Irrigating basics”, published in American nurseryman, December 1 (2007)Google Scholar
  59. 59.
    Kansara, K., Zaveri, V., Shah, S., Delwadkar, S., Jani, K.: Sensor based automated irrigation system with IOT: a technical review. 6(6):5331–5333 (2015)Google Scholar
  60. 60.
    Shah, N.G., Das, I.: Precision irrigation sensor network based irrigation, problems, perspectives and challenges of agricultural water management, pp. 217–232. IIT Bombay, India (2012)Google Scholar
  61. 61.
    Carpena R.M., Dukes, M.D.: Automatic irrigation based on soil moisture for vegetable crops. AE354 (2005). http://edis.ifas.ufl.edu/ae3
  62. 62.
    Gordon, R.C., Deon R., Edwin, W.: Practical modern SCADA protocols: DNP3, 60870.5 and related systems newnes (Elsevier) (2004)Google Scholar
  63. 63.
    Manag, W.: 84: pp 153–165 (2006)Google Scholar
  64. 64.
    Hantula, R.: How Do, Solar Panels Work. (Science in the Real World) (2009)Google Scholar
  65. 65.
    James, M.: Ebeling, Computer monitoring & control technology (Freshwater Institute) (2010)Google Scholar
  66. 66.
    Halvorsen: OPC and real-time systems in labview (Telemark University College) (2012)Google Scholar
  67. 67.
  68. 68.
    Harris: Solar powered automated greenhouse irrigation system (LumiTech International Limited) (2009)Google Scholar
  69. 69.
    Morris, L.: Solar-powered livestock watering systems (ATTRA) (2008)Google Scholar
  70. 70.
    Chitransh, A., Sagar, A., Kumar, A.: Automated solar powered irrigation system a technical review. Int. Res. J. Eng. Technol. (IRJET), 3(4) (Apr 2016). E-ISSN: 2395-0056Google Scholar
  71. 71.
    Gangadharan, A., Srinath, N., SwathyKrishna, I., Arjunan, S.C.: Solar powered smart irrigation system. IRACST—Int. J. Comput. Sci. Inf. Technol. Secur. (IJCSITS), 6(2) (Mar-April 2016). ISSN: 2249-9555Google Scholar
  72. 72.
    Kashiv, A., Bilala, A., Shirazi, N., Dwivedi, A., Joshi, R.: Solar Drip Irrigation Syatem. Int J Emerg Technol Adv Eng 6(4) (April 2016). ISSN 2250-2459, ISO 9001:2008 Certified JournalGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of ChemistryJIS College of EngineeringKalyaniIndia
  2. 2.Department of Electronics and Communication EngineeringJIS College of EngineeringKalyaniIndia
  3. 3.Department of Computer Science and EngineeringJIS College of EngineeringKalyaniIndia

Personalised recommendations