Skip to main content

Carbon Dioxide Biosequestration and Wastewater Treatment Using Microalgae

  • Chapter
  • First Online:
  • 1334 Accesses

Part of the book series: Education for Sustainability ((EDFSU))

Abstract

Algae have been studied for many years and recently microalgae have become a hot topic thanks to their multiple uses. This chapter studies the application of microalgae in biosequestration for carbon dioxide (CO2) capture. CO2 biosequestration is an important approach to tackle climate change. The use of algae to assimilate CO2 has multiple advantages: mitigation of emission risks at point sources (e.g., power plants) and no fertile soil requirements. Still, the application of microalgae cultivation techniques for CO2 biosequestration in situ on industrial sites faces some challenges, such as temperature management, CO2 storage and scalability. The second part of this chapter explores the application of microalgae strains in wastewater treatment technologies for the production of biofuels. The development of cost-effective and environmentally friendly wastewater treatment technologies is an important research area on the road toward sustainable production processes. Algae can be used to control the chemical oxygen demand and the content of ammonia and total phosphorus. A high diversity exists among natural microalgae; therefore, strain screening techniques and the adoption of biotechnological tools for the development of commercial strains are an important research area. Not only the strain type is important, the development of stable microbial ecologies with other algae strain types and with bacteria or fungi is also essential to develop stable growth consortia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelaziz, A. E. M., Leite, G. B., Belhaj, M. A., & Hallenbeck, P. C. (2014). Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresource Technology, 157, 140–148.

    Article  Google Scholar 

  • Abou-Shanabab, R. A. I., Ji, M. K., Kim, H. C., Jung Paeng, K.-J., & Jen, B.-H. (2013). Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. Journal of Environmental Management, 115(30), 257–264.

    Google Scholar 

  • Acién, F. C., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & Molina-Grima, E. (2016). Wastewater treatment using microalgae: How realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100, 9013–9022.

    Article  Google Scholar 

  • Alabi, A. O., Tampier, M., & Bibeau, E. (2009). Microalgae technologies and processes for biofuels/bioenergy production in British Columbia. Winnipeg: The British Columbia Innovation Council.

    Google Scholar 

  • Ammary, B. Y. (2005). Treatment of olive mill wastewater using an anaerobic sequencing batch reactor. Separation Technology, 177(1–3), 157–165.

    Google Scholar 

  • Arumugam, M., Agarwal, A., Arya, M. C., & Ahmed, Z. (2013). Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresource Technology, 131, 246–249.

    Google Scholar 

  • Attasat, S., Wanichpongpan, P., & Ruenglertpanyakul, W. (2013). Cultivation of microalgae (Oscillatoria okeni and Chlorella vulgaris) using tilapia-pond effluent and a comparison of their biomass removal efficiency. Water Science and Technology, 67, 271–277.

    Article  Google Scholar 

  • Barry, A., Wolfe, A., English, C., Ruddick, C., & Lambert, D. (2016). National algal biofuels technology review. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office: DC, USA.

    Google Scholar 

  • Beccari, M., Bonemazzi, F., Majone, M., & Riccardi, C. (1996). Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Research, 30(1), 183–189.

    Article  Google Scholar 

  • Benitez, J., Beltran-Heredia, J., Torregrosa, J., Acero, J. L., & Cercas, V. (1997). Aerobic degradation of olive mill wastewaters. Applied Microbiology and Biotechnology, 47(2), 185–188.

    Article  Google Scholar 

  • Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425–3431.

    Article  Google Scholar 

  • Bravo-Fritz, C. P., Sáez-Navarrete, C. A., Herrera-Zeppelin, L. A., & Varas-Concha, F. (2016). Multi-scenario energy-economic evaluation for a biorefinery based on microalgae biomass with application of anaerobic digestion. Algal Research, 16, 292–307.

    Article  Google Scholar 

  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.

    Article  Google Scholar 

  • Chelf, P., Brown, L. M., & Wyman, C. E. (1993). Aquatic biomass resources and carbon dioxide trapping. Biomass and Bioenergy, 4(3), 175–183.

    Google Scholar 

  • Cheng, H., & Tian, G. (2013). Identification of a newly isolated microalga from a local pond and evaluation of its growth and nutrients removal potential in swine breeding effluent. Desalination & Water Treatment, 51(13–15), 2768–2775.

    Article  Google Scholar 

  • Chinnasamy, S., Bhatnagarab, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097–3105.

    Article  Google Scholar 

  • Cho, S., Luong, T., Lee, D., Oh, Y.-K., & Lee, T. (2011). Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresource Technology, 102(18), 8639–8645.

    Google Scholar 

  • Constantine, T. A., & Johnson, B. (2006). Innovative processes for treatment of returned liquors from anaerobic digestion. In Proceedings of the water environment federation, residuals and biosolids management (pp. 608–617).

    Google Scholar 

  • Craggs, R. J., McAuley, P. J., & Smith, V. J. (1997). Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Research, 31(7), 1701–1717.

    Article  Google Scholar 

  • Craggs, R. J., Smith, V. J., & McAuley, P. J. (1995). Wastewater nutrient removal by marine microalgae cultured under ambient conditions in mini-ponds. Water Science and Technology, 31(12), 151–160.

    Article  Google Scholar 

  • Crofcheck, C., Shea, A., Montross, M., Crocker, M., & Andrews, R. (2013). Influence of flue gas components on the growth rate of Chlorella vulgaris and Scenedesmus acutus. Transactions of the ASABE, 56(6), 1421–1429.

    Google Scholar 

  • Delrue, F., Álvarez-Díaz, P. D., Fon-Sing, S., Fleury, G., & Sassi, J.-F. (2016). The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm. Energies, 9(3), 132–151.

    Article  Google Scholar 

  • Doucha, J., Straka, F., & Lívanský, K. (2005). Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. Journal of Applied Phycology, 17(5), 403–412.

    Google Scholar 

  • Durai, G., & Rajasimman, M. (2011). Journal of Environmental Science and Technology, 4(1), 1–17.

    Article  Google Scholar 

  • Elliot, D. C. (2016). Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels. Algal Research, 13, 255–263.

    Article  Google Scholar 

  • Farrelly, D. J., Everard, C. D., Fagan, C. C., & McDonnell, K. P. (2013). Carbon sequestration and the role of biological carbon mitigation: A review. Renewable and Sustainable Energy Reviews, 21, 712–727.

    Article  Google Scholar 

  • Farooq, W., Lee, Y.-C., Ryu, B.-G., Kim, B.-H., Kim, H.-S., Choi, Y.-E., et al. (2013). Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresource Technology, 132, 230–238.

    Article  Google Scholar 

  • Fenton, O., & Uallacháin, D. Ó. (2012). Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): A review. Algal Research, 1(1), 49–56.

    Article  Google Scholar 

  • Gomez, J. A., Höffner, K., & Barton, P. I. (2016). From sugars to biodiesel using microalgae and yeast. Green Chemistry, 18(2), 461–475.

    Article  Google Scholar 

  • González, L. E., Olivia, R., & Baena, C. S. (1997). Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technology, 60(3), 259–262.

    Article  Google Scholar 

  • Grobbelaar, J. U., Mohn, F. H., & Soeder, C. J. (2000). Potential of algal mass cultures to fix CO2 emissions from industrial point sources. Archiv fuer Hydrobiologie, Supplement, 133/Algological Studies, 98, 169–183.

    Google Scholar 

  • Halfhide, T., Åkerstrøm, A., Ivar, Lekang, O. I., Gislerød, H. R., & Ergas, S. J. (2014). Production of algal biomass, chlorophyll, starch and lipids using aquaculture wastewater under axenic and non-axenic conditions. Algal Research, 6, Part B, 152–159.

    Google Scholar 

  • Halfhide, T., Dalrymple, O. K., Wilkie, A. C., Trimmer, J., Gillie, B., Udom, I., et al. (2015). Growth of an indigenous algal consortium on anaerobically digested municipal sludge centrate: Photobioreactor performance and modeling. BioEnergy Research, 8(1), 249–258.

    Article  Google Scholar 

  • Ho, S. H., Chen, C. Y., Lee, D. J., & Chang, J. S. (2011). Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnology Advances, 29(2), 189–198.

    Article  Google Scholar 

  • Hodaifa, G., Martínez, M. A., & Sánchez, S. (2008). Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresource Technology, 99(5), 1111–1117.

    Article  Google Scholar 

  • Hodaifa, G., Martínez, M. A., & Sánchez, S. (2009). Daily doses of light in relation to the growth of Scenedesmus obliquus in diluted three-phase olive mill wastewater. Journal of Chemical Technology and Biotechnology, 84(10), 1550–1558.

    Article  Google Scholar 

  • Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., & Jinpeng, L. (2011). Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102(21), 9884–9890.

    Article  Google Scholar 

  • Jiang, L., Luo, S.-, Fan, X., Yang, Z., & Guo, R. (2011). Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Applied Energy, 88(10), 3336–3341.

    Article  Google Scholar 

  • Johnson, M. B., & Wen, Z. (2010). Development of an attached microalgal growth system for biofuel production. Applied Microbiology and Biotechnology, 85(3), 525.

    Article  Google Scholar 

  • Key World Energy Statistics. (2016). International Energy Agency. Retrieved from http://www.iea.org/statistics/.

  • Kim, M. K., Park, J. W., Park, C.S., Kim, S. J., Jeune, K. H., Chang, M. U., & Acreman, J. (2007). Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresource Technology, 98(11), 2220–2228.

    Google Scholar 

  • Khan, M., & Yoshida, N. (2008). Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. BioresourceTechnology, 99(3), 575–582.

    Article  Google Scholar 

  • Klinthong, W., Yang, Y. H., Huang, C. H., & Tan, C. S. (2015). A review: Microalgae and their applications in CO2 capture and renewable energy. Aerosol and Air Quality Research, 15(2), 712–742.

    Article  Google Scholar 

  • Komolafe, O., Velasquez Orta, S. B., Monje-Ramirez, I., Noguez, Yáñez, Harvey, A. P., & Orta Ledesma, M. T. (2014). Biodiesel production from indigenous microalgae grown in wastewater. Bioresource Technology, 154, 297–304.

    Article  Google Scholar 

  • Kong, Q. X., Ling, L., Martinez, B., Chen, P., & Ruan, R. (2010). Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160(1), 9.

    Article  Google Scholar 

  • Kothari, R., Pathak, V. V., Kumar, V., & Sing, D. P. (2012). Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: An integrated approach for treatment and biofuel production. Bioresource Technology, 116, 466–470.

    Article  Google Scholar 

  • Kröger, M., & Müller-Langer, F. (2012). Review on possible algal-biofuel production processes. Biofuels, 3(3), 333–349.

    Article  Google Scholar 

  • Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 102(8), 4945–4953.

    Article  Google Scholar 

  • Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690.

    Article  Google Scholar 

  • Lam, M. K., Lee, K. T., & Mohamed, A. R. (2012). Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control, 10, 456–469.

    Article  Google Scholar 

  • Langley, N. M., Harrison, S. T. L., & van Hille, R. P. (2012). A critical evaluation of CO2 supplementation to algal systems by direct injection. Biochemical Engineering Journal, 68, 70–75.

    Article  Google Scholar 

  • Levine, R. B., Costanza-Robinson, M. S., & Spatafora, G. A. (2011). Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass and Bioenergy, 35, 40–49.

    Google Scholar 

  • Li, C., Yang, H., Xia, X., Li, Y., Chen, L., Zhang, M., … Wang, W. (2013). High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization. Bioresource Technology, 127, 248–255.

    Article  Google Scholar 

  • Lima, S. A. C., Raposo, F. M. J., Castro, P. M. L., & Morais, R. M. (2004). Biodegradation of p-chlorophenol by a microalgae consortium. Water Research, 38(1), 97–102.

    Article  Google Scholar 

  • Lívanský, K., & Doucha, J. (1998). Archiv fuer Hydrobiologie. Supplement, 124/Algological Studies, 89, 137–149.

    Google Scholar 

  • Lü, J., Sheahan, C., & Fu, P. (2011). Metabolic engineering of algae for fourth generation biofuels production. Energy & Environmental Science, 4(7), 2451–2466.

    Article  Google Scholar 

  • Luo, Y., Le-Clech, P., & Henderson, R. K. (2017). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425–437.

    Article  Google Scholar 

  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

    Article  Google Scholar 

  • Matsumoto, H., Hamasaki, A., Sioji, N., & Ikuta, Y. (1997). Influence of CO2, SO2 and NO in flue gas on microalgae productivity. Journal of Chemical Engineering of Japan, 30(4), 620–624.

    Article  Google Scholar 

  • Mitra, D., van Leeuwen, J. (H.), & Lamsal, B. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Research, 1(1), 40–48.

    Google Scholar 

  • Muradov, N., Taha, M., Miranda, A., Wrede, D., Kadali, K., Gujar, A., Stevenson, T., … Mouradov, A. (2015). Fungal-assisted algal flocculation: Application in wastewater treatment and biofuel production. Biotechnology for Biofuels, 8(1), 1–23.

    Article  Google Scholar 

  • Moustafa, S., & El Shimi, H. (2016). Phycoremediation of olive wastewater for sustainable production. International Journal of ChemTech Research, 9, 567–579.

    Google Scholar 

  • Naghdi, F. G., González González, L. M., Chan, W., & Schenk, P. M. (2016). Progress on lipid extraction from wet algal biomass for biodiesel production. Microbiology and Biotechnology, 9(6), 718–726.

    Article  Google Scholar 

  • Olguín, E. J., Mendoza, A., González-Portela, R. E., & Novelo, E. (2013). Population dynamics in mixed cultures of Neochloris oleoabundans and native microalgae from water of a polluted river and isolation of a diatom consortium for the production of lipid rich biomass. New Biotechnology, 30(6), 705–715.

    Article  Google Scholar 

  • Ono, E., & Cuello, J. L. (2007). Carbon dioxide mitigation using thermophilic cyanobacteria. Biosystems Engineering, 96(1), 129–134.

    Article  Google Scholar 

  • Papazi, A., & Kotzabasis, K. (2013). “Rational” management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus. PLoS ONE, 8(4), e61682.

    Article  Google Scholar 

  • Peng, F. Q., Bin, G. G., Yang, B., Liu, S., Lai, H. J., Liu, Y. S., … Zhou, G. J. (2014). Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation kinetics and products identification. Chemosphere, 95, 581–588.

    Article  Google Scholar 

  • Perales-Vela, H. V., Peña-Castro, J. M., & Cañizares-Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64(1), 1–10.

    Article  Google Scholar 

  • Perron, M. C., & Juneau, P. (2011). Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environmental Research, 111(4), 520–529.

    Article  Google Scholar 

  • Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25.

    Article  Google Scholar 

  • Popper, Z. A., Michel, G., Hervé, C.; Domozych, D. S., Willats, W. G., Tuohy, M. G., … Stengel, D. B. (2011). Evolution and diversity of plant cell walls: From algae to flowering plants. Annual Review of Plant Biology, 62, 567–90.

    Article  Google Scholar 

  • Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., & Luque, R. (2018). A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. Journal of Cleaner Production, 181, 42–59.

    Article  Google Scholar 

  • Ren, H. Y., Liu, B. F., Kong, F., Zhao, L., & Ren, N. (2015). Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal. Water Research, 85, 404–412.

    Article  Google Scholar 

  • Ruiz, J., Olivieri, G., de Vree, J., Bosma, R., Willems, P., Reith, J. H., … Barbosa, M. J. (2016). Towards industrial products from microalgae. Energy and Environmental Science, 9(10), 3036–3043.

    Article  Google Scholar 

  • Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. BioresourceTechnology, 101(1), 58–64.

    Article  Google Scholar 

  • Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247–253.

    Article  Google Scholar 

  • Quiroz Arita, C. E., Peebles, C., & Bradley, T. H. (2015). Scalability of combining microalgae-based biofuels with wastewater facilities: A review. Algal Research, 9, 160–169.

    Article  Google Scholar 

  • Sethunathan, N., Megharaj, M., Chen, Z. L., Williams, B. D., Lewis, G., & Naidu, R. (2004). Algal degradation of a known endocrine disrupting insecticide, α-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. Journal of Agricultural and Food Chemistry, 52(10), 3030–3035.

    Article  Google Scholar 

  • Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production—A review. Renewable and Sustainable Energy Reviews, 16(4), 2347–2353.

    Article  Google Scholar 

  • Singh, S. P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews, 50, 431–444.

    Article  Google Scholar 

  • Skjånes, K., Rebours, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33(2), 172–215.

    Article  Google Scholar 

  • Slade, A. H., Ellis, R. J., Van den Heuvel, M., & Stuthridge, T. R. (2004). Nutrient minimisation in the pulp and paper industry: an overview. Water Science and Technology, 50, 111–122.

    Google Scholar 

  • Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941.

    Article  Google Scholar 

  • Tarlan, E., Dilek, F. B., & Yetis, U. (2002). Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresource Technology, 84(1), 1–5.

    Article  Google Scholar 

  • Taştan, B. E., Duygu, E., & Dönmez, G. (2012). Boron bioremoval by a newly isolated Chlorella sp. and its stimulation by growth stimulators. Water Research, 46(1), 167–175.

    Google Scholar 

  • Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342.

    Article  Google Scholar 

  • Vuppaladadiyam, A. K., Prinsen, P., Raheem, A., Luque, R., & Zhao, M. (2018). Sustainability analysis of microalgae production systems: A review on resource with unexploited high-value reserves. Environmental Science and Technology, 52(24), 14031–14049.

    Article  Google Scholar 

  • Wang, H., Xiong, H., Hui, Z., & Zeng, X. (2012). Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresource Technology, 104, 215–220.

    Article  Google Scholar 

  • Wang, L., Li, Y. C., Chen, P., Min, M., Chen, Y. F., Zhu, J., et al. (2010). Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology, 101(8), 2623–2628.

    Article  Google Scholar 

  • Weissman, J. C., Goebel, R. P., & Benemann, J. R. (1988). Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation. Biotechnology and Bioengineering, 31(4), 336–344.

    Article  Google Scholar 

  • Williams, P. J. le B., & Laurens, L. M. L. (2010). Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy and Environmental Science, 3(5), 554–590.

    Google Scholar 

  • Wilson, M. H., Groppo, J., Placido, A., Graham, S., Morton, S. A., Santillan-Jimenez, E., … Andrews, R. (2014). CO2 recycling using microalgae for the production of fuels. Applied Petrochemistry Research, 4(1), 41–53.

    Article  Google Scholar 

  • Woertz, I., Feffer, A., Lundquist, T., & Nelson, Y. (2009). Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering, 135(11), 1115–1122.

    Article  Google Scholar 

  • Zhang, Y., Su, H., Zhong, Y., Zhang, C., Shen, Z., Sang, W., … Zhou, X. (2012). The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products. Water Research, 46(17), 5509–5516.

    Article  Google Scholar 

  • Zhao, B., & Su, Y. (2014). Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renewable and Sustainable Energy Reviews, 31, 121–132.

    Article  Google Scholar 

  • Zhou, W., Li, Y., Min, M., Hu, B., Chen, P., & Ruan, R. (2011). Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology, 102(13), 6909–6919.

    Article  Google Scholar 

  • Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., et al. (2013). Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Research, 47(13), 4294–4302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pepijn Prinsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Consoletti, S.F., Prinsen, P. (2019). Carbon Dioxide Biosequestration and Wastewater Treatment Using Microalgae. In: So, W., Chow, C., Lee, J. (eds) Environmental Sustainability and Education for Waste Management. Education for Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-9173-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9173-6_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9172-9

  • Online ISBN: 978-981-13-9173-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics