Skip to main content

A Study on Fenton Technology for Polypropylene Waste Degradation and Recovery of High-Value Chemicals

  • Chapter
  • First Online:
Environmental Sustainability and Education for Waste Management

Part of the book series: Education for Sustainability ((EDFSU))

Abstract

Plastic waste management and handling are critical issues, and the development of breakthrough technology for these purposes is a challenging task. In this chapter, it will explore the feasibility of waste degradation and hopefully provide some insights and fundamental information for scientists and chemical engineers to address the issues of degradation and mineralization of inert plastic wastes, with polypropylene (PP) as an example, through effective chemical processes including surface activation and Fenton and photo-Fenton technology. To achieve a greener reaction process for practical use, commercially available hydrogen peroxide (H2O2) has been widely used as an oxidant. The Fenton reaction under ambient dark conditions was successful in converting the activated PP materials into water-soluble organic matter and carbon dioxide (CO2) within 40 min, while the photo-Fenton reaction under UV-vis illumination was able to achieve complete mineralization within 80 min as determined by the analysis of the reaction solutions. In addition, the dissolved organic matter generated from the Fenton reaction was identified as belonging to three main classes: monocarboxylic acids, dicarboxylic acids, and diols. The study revealed that the concentration of H2O2 used in the Fenton reaction significantly affects the amount of diols and carboxylic acids recovered from the PP degradation, where the ratio could be tuned from 37.2 to 2.1% for diols and from 55.9 to 93.1% for carboxylic acids, under dark conditions. Moreover, under photo-Fenton degradation conditions, due to rapid decomposition, a positive pressure was observed (CO2 gas: 550 kPa/g of material) from complete degradation of the activated PP. The gas pressure could potentially be converted into mechanical energy for further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, I., Khan, M. I., Khan, H., Ishaq, M., Tariq, R., Gul, K., et al. (2015). Pyrolysis study of polypropylene and polyethylene into premium oil products. International Journal Green Energy, 12(7), 663–671.

    Article  Google Scholar 

  • Andrady, A. L. (1997). Wavelength sensitivity in polymer photodegradation. Polymer Analysis Polymer Physics (pp. 47–94). Heidelberg, Berlin: Springer.

    Chapter  Google Scholar 

  • Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S., & Uppara, P. V. (2008). Biodegradation of polyethylene and polypropylene. Indian Journal of Biotechnology, 7, 9–22.

    Google Scholar 

  • Barb, W. G., Baxendale, J. H., George, P., & Hargrave, K. R. (1949). Reactions of ferrous and ferric ions with hydrogen peroxide. Nature, 163, 692–694.

    Article  Google Scholar 

  • Chakraborty, J., Sarkar, J., Kumar, R., & Madras, G. (2004). Ultrasonic degradation of polybutadiene and isotactic polypropylene. Polymer Degradation and Stability, 85(1), 555–558.

    Article  Google Scholar 

  • Chow, C. F., Wong, W. L., Ho, K. Y. F., Chan, C. S., & Gong, C. B. (2016). Combined chemical activation and Fenton degradation to convert waste polyethylene into high-value fine chemicals. Chemistry A European Journal, 22, 9513–9518.

    Article  Google Scholar 

  • Chow, C. F., Wong, W. L., Chan, C. S., Li, Y., Tang, Q., & Gong, C. B. (2017). Breakdown of plastic waste into economically valuable carbon resources: Rapid and effective chemical treatment of polyvinylchloride with the Fenton catalyst. Polymer Degradation and Stability, 146, 34–41.

    Article  Google Scholar 

  • Deng, Y., & Englehardt, J. D. (2006). Treatment of landfill leachate by the Fenton process. Water Research, 40(20), 3683–3694.

    Article  Google Scholar 

  • Desai, V., Shenoy, M. A., & Gogate, P. R. (2008). Degradation of polypropylene using ultrasound-induced acoustic cavitation. Chemical Engineering Journal, 140, 483–487.

    Article  Google Scholar 

  • Dimov, A., & Islam, M. A. (1991). Sulfonation of polyethylene membranes. Journal of Applied Polymer Science, 42, 1285–1287.

    Article  Google Scholar 

  • Durmuş, A., Koç, S. N., Pozan, G. S., & Kaşgöz, A. (2005). Thermal-catalytic degradation kinetics of polypropylene over BEA, ZSM-5 and MOR zeolites. Applied Catalysis, B: Environmental, 61(3–4), 316–322.

    Article  Google Scholar 

  • FakhrHoseini, S. M., & Dastanian, M. (2013). Predicting pyrolysis products of PE, PP, and PET using NRTL activity coefficient model. Journal of Chemistry, 2013, 5.

    Article  Google Scholar 

  • Fenton, H. J. H. (1894). LXXIII.-Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899–910.

    Article  Google Scholar 

  • Fernando, S. S., Christensen, P. A., Egerton, T. A., & White, J. R. (2007). Carbon dioxide evolution and carbonyl group development during photodegradation of polyethylene and polypropylene. Polymer Degradation and Stability, 92(12), 2163–2172.

    Article  Google Scholar 

  • Fischer, D., & Eysel, H. H. (1994). Analysis of polyethylene surface sulfonation. Journal of Applied Polymer Science, 52, 545–548.

    Article  Google Scholar 

  • Haber, F., & Weiss, J. (1934). The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A—Mathematical and Physical Sciences, 147, 332.

    Google Scholar 

  • Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100.

    Article  Google Scholar 

  • Hermosilla, D., Cortijo, M., & Huang, C. P. (2009). Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Science of the Total Environment, 407(11), 3473–3481.

    Article  Google Scholar 

  • Hwang, E. Y., Choi, J. K., Kim, D. H., Park, D. W., & Woo, H. C. (1998). Catalytic degradation of polypropylene I. Screening of catalysts. Korean Journal of Chemical Engineering, 15(4), 434–438.

    Google Scholar 

  • Ihata, J. (1988). Formation and reaction of polyenesulfonic acid. I. Reaction of polyethylene films with SO3. Journal of Polymer Science Part A: Polymer Chemistry, 26(1), 167–176.

    Article  Google Scholar 

  • Ishihara, Y., Nanbu, H., Saido, K., Ikemura, T., Takesue, T., & Kuroki, T. (1993). Mechanism of gas formation in catalytic decomposition of polypropylene. Fuel, 72, 1115–1119.

    Article  Google Scholar 

  • Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., … Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771.

    Article  Google Scholar 

  • Jeon, H. J., & Kim, M. N. (2016). Isolation of mesophilic bacterium for biodegradation of polypropylene. International Biodeterioration and Biodegradation, 115, 244–249.

    Article  Google Scholar 

  • Kaneko, M., Kumagai, S., Nakamura, T., & Sato, H. (2004). Study of sulfonation mechanism of low-density polyethylene films with fuming sulfuric acid. Journal of Applied Polymer Science, 91, 2435–2442.

    Article  Google Scholar 

  • Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55, 1235–1243.

    Article  Google Scholar 

  • Lin, H., & Isayev, A. I. (2006). Ultrasonic treatment of polypropylene, polyamide 6, and their blends. Journal of Applied Polymer Science, 102, 2643–2653.

    Article  Google Scholar 

  • Lin, Y. H., & Yen, H. Y. (2005). Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons. Polymer Degradation and Stability, 89, 101–108.

    Article  Google Scholar 

  • Litter, M. I. (2005). Introduction to photochemical advanced oxidation processes for water treatment. In Environmental photochemistry part II (pp. 325–366). Springer.

    Google Scholar 

  • MacManus, L. F., Walzak, M. J., & McIntyre, N. S. (1999). Study of ultraviolet light and ozone surface modification of polypropylene. Journal of Polymer Science Part A-1, 37(14), 2489–2501.

    Google Scholar 

  • Ollis, D. F., Pelizzetti, E., & Serpone, N. (1989). Heterogeneous photocatalysis in the environment: Application to water purification. In Photocatalysis: Fundamentals and applications. New York: Wiley Interscience.

    Google Scholar 

  • Panda, A. K., & Singh, R. K. (2014). Conversion of waste polypropylene to liquid fuel using acid-activated kaolin. Waste Management and Research, 32(10), 997–1004.

    Article  Google Scholar 

  • Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1–84.

    Article  Google Scholar 

  • Sailors, H. R., & Hogan, J. P. (1981). History of polyolefins. Journal of Macromolecular Science: Part A, 15(7), 1377–1402.

    Article  Google Scholar 

  • Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326.

    Article  Google Scholar 

  • Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Manage ment, 28, 1835–1852.

    Article  Google Scholar 

  • Sinn, H., & Kaminsky, W. (1980). Ziegler-Natta catalysis. Advances in Organometallic Chemistry, 18, 99–149.

    Article  Google Scholar 

  • Uemichi, Y., Makino, Y., & Kanazuka, T. (1989). Degradation of polypropylene to aromatic hydrocarbons over Pt- and Fe-containing activated carbon catalysts. Journal of Analytical and Applied Pyrolysis, 16(3), 229–238.

    Article  Google Scholar 

  • Umar, M., Aziz, H. A., & Yusoff, M. S. (2010). Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Management, 30(11), 2113–2121.

    Article  Google Scholar 

  • United States Environmental Protection Agency. (2016). Advancing sustainable materials management 2014 fact sheet. Retrieved from https://www.epa.gov/sites/production/files/2016-11/documents/2014_smmfactsheet_508.pdf.

  • Walzak, M. J., Flynn, S., Foerch, R., Hill, J. M., Karbashewski, E., Lin, A., et al. (1995). UV and ozone treatment of polypropylene and poly(ethylene terephthalate). Journal of Adherion Science and Technology, 9(9), 1229–1248.

    Article  Google Scholar 

  • Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews, 50, 1167–1180.

    Article  Google Scholar 

  • Zhao, W., Hasegawa, S., Fujita, J., Yshii, F., Sasaki, T., Makuuchi, K., … Nishimoto, S. (1996). Effects of zeolites on the pyrolysis of polypropylene. Polymer Degradation and Stability, 53(1), 129–135.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant from the Research Grants Council of Hong Kong SAR, China (GRF 18303716) and the grants from The Education University of Hong Kong (Project No. R04231, 04262 and 04300). Special thanks to the City University of Hong Kong for assistance with the SEM and EDS studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheuk Fai Chow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chow, C.F., Chan, C.S. (2019). A Study on Fenton Technology for Polypropylene Waste Degradation and Recovery of High-Value Chemicals. In: So, W., Chow, C., Lee, J. (eds) Environmental Sustainability and Education for Waste Management. Education for Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-9173-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9173-6_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9172-9

  • Online ISBN: 978-981-13-9173-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics