Skip to main content

Quantum Well Infrared Photodetector for the SWIR Range

  • Conference paper
  • First Online:
  • 968 Accesses

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 152))

Abstract

An InGaAs/InAlAs superlattice infrared photodetector is developed to reach the forbidden gap in the SWIR range for arsenides, between 1.7 and 2.5 μm, appropriate for surveillance imaging. The figures of merit of the device are determined to be 120 K for the BLIP temperature and 2.1 mA/W and 3 × 106 Jones for the best responsivity and detectivity, respectively, obtained at 120 K under +4 V bias. Possible approaches to improve the device performance are addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rogalski, A.: HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68(10), 2267 (2005)

    Article  Google Scholar 

  2. Shen, S.: Comparison and competition between MCT and QW structure material for use in IR detectors. Microelectron. J. 25, 713–739 (1994)

    Article  MathSciNet  Google Scholar 

  3. Goldberg, A.C., Kennerly, S.W., Little, J.W., Shafer, T.A., Mears, C.L., Schaake, H.F., Winn, M.L., Taylor, M., Uppal, P.N.: Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays. Opt. Eng. 42, 30–47 (2003)

    Article  Google Scholar 

  4. Downs, C., Vandervelde, T.: Progress in infrared photodetectors since 2000. Sensors 13, 5054–5098 (2013); Author, F., Author, S., Author, T.: Book title, 2nd edn. Publisher, Location (1999)

    Google Scholar 

  5. Liu, H.C.: Quantum dot infrared photodetector. Optoelectron. Rev. 1, 1–6 (2003)

    Google Scholar 

  6. Rogalski, A.: Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002)

    Article  Google Scholar 

  7. See www.landsat.usgs.gov or www.landsat.gsfc.nasa.gov

  8. Guerra, L., Penello, G., Pires, M., Pinto, L., Jakomin, R., Mourão, R., Degani, M., Maialle, M., Souza, P.: Detecting infrared radiation beyond the bandoffset with intersubband transitions. IEEE Photonics Technol. Lett. 28, 1641–1644 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by FAPERJ, CNPq, FINEP, CAPES and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pereira, P. et al. (2020). Quantum Well Infrared Photodetector for the SWIR Range. In: Rocha, Á., Pereira, R. (eds) Developments and Advances in Defense and Security. Smart Innovation, Systems and Technologies, vol 152. Springer, Singapore. https://doi.org/10.1007/978-981-13-9155-2_29

Download citation

Publish with us

Policies and ethics