Skip to main content

Foundation

  • Chapter
  • First Online:
  • 274 Accesses

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

Compared with traditional strategies (e.g., information theoretic learning He et al, Robust recognition via information theoretic learning, 2014, [19]), deep learning techniques have recently revealed its superiority in various computer vision tasks. Deep face representation is a compact and discriminative description of raw face data (e.g., face images) extracted by deep networks. It is a crucial step in face recognition system which is one of the fundamental tasks in face analysis. This chapter gives a brief introduction of basic deep learning concepts in face analysis and synthesis. (1) A coherent study of the deep face representation is first presented. We start with a compact survey of CNN based face recognition, then followed with a discussion on unit activation functions in CNN. Moreover, a concrete instance (namely Light CNN) is described in details, serving as a representative of CNN architectures in deep face representation. (2) As the most prominent deep generative models, the classical versions of GAN and VAE are briefly introduced in particular. Additionally, we discuss their limitations as well as improved variants.

Part of this chapter is reprinted from Wu et al. [48], with permission from IEEE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amari, S.I.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). arXiv:1701.07875

  3. Bansal, A., Castillo, C., Ranjan, R., Chellappa, R.: The do’s and don’ts for cnn-based face verification. In: IEEE International Conference on Computer Vision Workshop (2017)

    Google Scholar 

  4. Bansal, A., Nanduri, A., Castillo, C., Ranjan, R., Chellappa, R.: Umdfaces: An annotated face dataset for training deep networks. In: International Joint Conference on Biometrics (2017)

    Google Scholar 

  5. Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial networks (2017). arXiv:1703.10717

  6. Best-Rowden, L., Han, H., Otto, C., Klare, B., Jain, A.K.: Unconstrained face recognition: identifying a person of interest from a media collection. IEEE Trans. Inf. Forensics Secur. 9(12), 2144–2157 (2014)

    Article  Google Scholar 

  7. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: a dataset for recognising faces across pose and age (2017). arXiv:1710.08092

  8. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). In: International Conference on Learning Representation (2016)

    Google Scholar 

  9. Denton, E.L., Chintala, S., Fergus, R. et al.: Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS, pp. 1486–1494 (2015)

    Google Scholar 

  10. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. In: ICLR (2017)

    Google Scholar 

  11. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: NIPS, pp. 658–666 (2016)

    Google Scholar 

  12. Durugkar, I., Gemp, I., Mahadevan, S.: Generative multi-adversarial networks. In: ICLR (2017)

    Google Scholar 

  13. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  14. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A.C., Bengio, Y.: Maxout networks. In: International Conference on Machine Learning (2013)

    Google Scholar 

  15. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: NIPS, pp. 5769–5779 (2017)

    Google Scholar 

  16. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: Ms-celeb-1m: a dataset and benchmark for large-scale face recognition. In: European Conference on Computer Vision (2016)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  19. He, R., Hu, B., Yuan, X., Wang, L. et al.: Robust Recognition via Information Theoretic Learning. Springer, Berlin (2014)

    Google Scholar 

  20. Huang, H., Li, Z., He, R., Sun, Z., Tan, T.: Introvae: Introspective variational autoencoders for photographic image synthesis. In: Advances in Neural Information Processing Systems, pp. 10236–10245 (2018)

    Google Scholar 

  21. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  22. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: NIPS, pp. 4743–4751 (2016)

    Google Scholar 

  23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  25. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: ICML, pp. 1558–1566 (2016)

    Google Scholar 

  26. Lei, Z., Chu, R., He, R., Liao, S., Li, S.Z.: Face recognition by discriminant analysis with gabor tensor representation. In: International Conference on Biometrics (2007)

    Google Scholar 

  27. Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: ICML, pp. 1718–1727 (2015)

    Google Scholar 

  28. Lin, M., Chen, Q., Yan, S.: Network in network. In: International Conference on Learning Representation (2014)

    Google Scholar 

  29. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: International Conference on Machine Learning (2013)

    Google Scholar 

  30. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2015). arXiv:1511.05644

  31. Masi, I., Tran, A.T., Hassner, T., Leksut, J.T., Medioni, G.: Do we really need to collect millions of faces for effective face recognition? In: European Conference on Computer Vision (2016)

    Google Scholar 

  32. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning (2010)

    Google Scholar 

  33. Nguyen, T., Le, T., Vu, H., Phung, D.: Dual discriminator generative adversarial nets. In: NIPS, pp. 2667–2677 (2017)

    Google Scholar 

  34. van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A. et al.: Conditional image generation with pixelcnn decoders. In: NIPS, pp. 4790–4798 (2016)

    Google Scholar 

  35. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference (2015)

    Google Scholar 

  36. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection (2015). CoRR arXiv:1506.02640

  37. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS, pp. 2234–2242 (2016)

    Google Scholar 

  38. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR (2014)

    Google Scholar 

  40. Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K., Winther, O.: Ladder variational autoencoders. In: NIPS, pp. 3738–3746 (2016)

    Google Scholar 

  41. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  42. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  43. Sun, Z., Tan, T.: Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2211–2226 (2009)

    Article  Google Scholar 

  44. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  45. Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: Web-scale training for face identification. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  46. Van Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: ICML, pp. 1747–1756 (2016)

    Google Scholar 

  47. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)

    Google Scholar 

  48. Wu, X., He, R., Sun, Z., Tan, T.: A light cnn for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  49. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch (2014). CoRR arXiv:1411.7923

  50. Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV, pp. 5907–5915 (2017)

    Google Scholar 

  51. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.: StackGAN++: realistic image synthesis with stacked generative adversarial networks (2017). arXiv:1710.10916v2

  52. Zhang, Z., Xie, Y., Yang, L.: Photographic text-to-image synthesis with a hierarchically-nested adversarial network (2018). arXiv:1802.09178

  53. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. In: ICLR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Huang, H., He, R., Tan, T. (2020). Foundation. In: Heterogeneous Facial Analysis and Synthesis. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-13-9148-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9148-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9147-7

  • Online ISBN: 978-981-13-9148-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics