Skip to main content

Functionalization of Aromatic N-Heterocycles with C(sp3)–H Sources via CDC Reactions

  • Chapter
  • First Online:
Heterocycles via Cross Dehydrogenative Coupling

Abstract

Nitrogen-containing heterocycles are a ubiquitous nature and synthetic compounds having wide spectrum of activities, which has found applications in various industrial fields. Among a variety of synthetic approaches toward substituted N-heterocycles, C(sp2)–H functionalization represents the most rapid and convenient transformation. In this review, we concentrated attention on the methods of construction of new C–C bonds via direct coupling of N-heterocyclic C(sp2)–H with C(sp3)–H derivatives, which is called cross-dehydrogenative coupling and satisfied the requirements of “atom economy” and “green chemistry.” Alkanes, ethers, amines and amides, methylarenes, etc., were involved in the oxidative process with N-heterocyclic compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ar:

Aryl

BHP:

2,6-Di-tert-butyl-4-methylphenol

Binap:

2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl

BPO:

Benzoyl peroxide

CCHE:

Cross-coupling hydrogen evolution

CDC:

Cross-dehydrogenative coupling

DCDC:

Double cross-dehydrogenative coupling

CFL:

Compact fluorescent lamp

DCE:

1,2-Dichloroethane

DCP:

Dicumyl peroxide

DDQ:

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DG:

Directing group

DMA:

N,N-Dimethylacetamide

DMF:

N,N-Dimethylformamide

DTBP:

Di-tert-butyl peroxide

HAT:

Hydrogen atom transfer

LED:

Light-emitting diode

PG:

Protecting group

Ph:

Phenyl

PIFA:

Phenyliodine bis-(trifluoroacetate)

PMP:

p-Methoxyphenyl

Py-GC-MS:

Pyrolysis–gas chromatography–mass spectrometry

RT:

Room temperature

SET:

Single-electron transfer

TBAB:

Tetra-n-butylammonium bromide

TBAI:

Tetra-n-butylammonium iodide

TBPB:

Tert-butyl perbenzoate

TEMPO:

(2,2,6,6-Tetramethylpiperidin-1-yl)oxidanyl

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

THIQ:

Tetrahydroisoquinoline

TMU:

N,N,N′,N′-tetramethylurea

Tol:

Tolyl

TsOH:

p-Toluenesulfonic acid

References

  1. Minisci F (1976) Recent aspects of homolytic aromatic substitutions. Top Curr Chem 62:1–48

    Article  CAS  PubMed  Google Scholar 

  2. Minisci F, Vismara E, Fontana F (1989) Recent developments of free-radical substitutions of heteroaromatic bases. Heterocycles 28:489–519

    Article  CAS  Google Scholar 

  3. Minisci F, Fontana F, Vismara E (1990) Substitutions by nucleophilic free radicals: a new general reaction of heteroaromatic bases. J Heterocycl Chem 27:79–96

    Article  CAS  Google Scholar 

  4. Punta C, Minisci F (2008) Minisci reaction: a Friedel-Crafts type process with opposite reactivity and selectivity. Selective homolytic alkylation, acylation, carboxylation and carbamoylation of heterocyclic aromatic bases. Trends Heterocycl Chem 13:1–68

    CAS  Google Scholar 

  5. Duncton MAJ (2011) Minisci reactions: versatile CH-functionalizations for medicinal chemists. Med Chem Commun 2:1135–1161

    Article  CAS  Google Scholar 

  6. Li JJ (2014) Minisci reaction. In: Name reactions, 5th edn. Springer International Publishing, pp 361–362

    Google Scholar 

  7. Minisci F, Vismara E, Morini G, Fontana F, Levi S, Serravalle M, Giordano C (1986) Polar effects in free-radical reactions. selectivity and reversibility in the homolytic benzylation of protonated heteroaromatic bases. J Org Chem 51:476–479

    Article  CAS  Google Scholar 

  8. Citterio A, Gentile A, Minisci F, Serravalle M, Ventura S (1984) Polar effects in free-radical reactions. Carbamoylation and α-N-amidoalkylation of heteroaromatic bases by amides and hydroxylamine-O-sulfonic acid. J Org Chem 49:3364–3367

    Article  CAS  Google Scholar 

  9. Deng G, Li C-J (2009) Sc(OTf)3-catalyzed direct alkylation of quinolines and pyridines with alkanes. Org Lett 11:1171–1174

    Article  CAS  PubMed  Google Scholar 

  10. Deng G, Ueda K, Yanagisawa S, Itami K, Li C-J (2009) Coupling of nitrogen heteroaromatics and alkanes without transition metals: a new oxidative cross-coupling at C–H/C–H bonds. Chem Eur J 15:333–337

    Article  CAS  Google Scholar 

  11. Antonchick AP, Burgmann L (2013) Direct selective oxidative cross-coupling of simple alkanes with heteroarenes. Angew Chem Int Ed 52:3267–3271

    Article  CAS  Google Scholar 

  12. Xia R, Niu H-Y, Qu G-R, Guo H-M (2012) CuI controlled C–C and C–N bond formation of heteroaromatics through C(sp3)–H activation. Org Lett 14:5546–5549

    Article  CAS  PubMed  Google Scholar 

  13. Wang D-C, Xia R, Xie M-S, Qu G-R, Guo H-M (2016) Synthesis of cycloalkyl substituted purine nucleosides via a metal-free radical route. Org Biomol Chem 14:4189–4193

    Article  CAS  PubMed  Google Scholar 

  14. Faisca Phillips AM, Pombeiro AJL (2018) Recent developments in transition metal-catalyzed cross-dehydrogenative coupling reactions of ethers and thioethers. ChemCatChem 10:3354–3383

    Article  CAS  Google Scholar 

  15. Lakshman MK, Vuram PK (2017) Cross-dehydrogenative coupling and oxidative-amination reactions of ethers and alcohols with aromatics and heteroaromatics. Chem Sci 8:5845–5888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lai M, Li Y, Wu Z, Zhao M, Ji X, Liu P, Zhang X (2018) Synthesis of alkyl-substituted pyrazine N-oxides by transition-metal-free oxidative cross-coupling reactions. Asian J Org Chem 7:1118–1123

    Article  CAS  Google Scholar 

  17. Yang Q, Li S, Wang J (Joelle) (2018) Cobalt-catalyzed cross-dehydrogenative coupling of imidazo[1,2-a]pyridines with isochroman using molecular oxygen as the oxidant. Org Chem Front 5:577–581

    Google Scholar 

  18. Jiang H, Xie J, Lin A, Cheng Y, Zhu C (2012) The Au(III)-catalyzed coupling reactions between alcohols and N-heterocycles via C–H bond activation. RSC Adv 2:10496–10498

    Article  CAS  Google Scholar 

  19. Adib M, Pashazadeh R, Rajai-Daryasarei S, Kabiri R, Gohari SJA (2016) Transition-metal-free acylation of quinolines and isoquinolines with arylmethanols via oxidative cross-dehydrogenative coupling reactions. Synlett 27:2241–2245

    Article  CAS  Google Scholar 

  20. Wan M, Lou H, Liu L (2015) C1-benzyl and benzoyl isoquinoline synthesis through direct oxidative cross-dehydrogenative coupling with methyl arenes. Chem Commun 51:13953–13956

    Article  CAS  Google Scholar 

  21. Shi X, Zhang F, Luo W-K, Yang L (2017) Oxidant-triggered C1-benzylation of isoquinoline by iodine–catalyzed cross-dehydrogenative-coupling with methylarenes. Synlett 13:494–498

    Google Scholar 

  22. Ali W, Behera A, Guin S, Patel BK (2015) Regiospecific benzoylation of electron-deficient N-heterocycles with methylbenzenes via a Minisci-type reaction. J Org Chem 80:5625–5632

    Article  CAS  PubMed  Google Scholar 

  23. Kianmehr E, Faghih N, Khan KM (2015) Palladium-catalyzed regioselective benzylation–annulation of pyridine N-oxides with toluene derivatives via multiple C-H bond activations: benzylation versus arylation. Org Lett 17:414–417

    Article  CAS  PubMed  Google Scholar 

  24. Kianmehr E, Gholamhosseyni M (2018) Visible-light-promoted copper-catalyzed regioselective benzylation of pyridine N-oxides versus thermal acylation reaction with toluene derivatives. Eur J Org Chem 2018:1559–1566

    Article  CAS  Google Scholar 

  25. Wan L, Qiao K, Sun XN, Di ZC, Fang Z, Li ZJ, Guo K (2016) Benzylation of heterocyclic N-oxides via direct oxidative cross-dehydrogenative coupling with toluene derivatives. New J Chem 40:10227–10232

    Article  CAS  Google Scholar 

  26. Zhang Y, Feng J, Li C-J (2008) Palladium-catalyzed methylation of aryl C–H bond by using peroxides. J Am Chem Soc 130:2900–2901

    Article  CAS  PubMed  Google Scholar 

  27. Li G, Yang S, Lv B, Han Q, Ma X, Sun K, Wang Z, Zhao F, Lv Y, Wu H (2015) Metal-free methylation of a pyridine N-oxide C–H bond by using peroxides. Org Biomol Chem 13:11184–11188

    Article  CAS  PubMed  Google Scholar 

  28. Guo S, Li Y, Wang Y, Guo X, Meng X, Chen B (2015) Iron-catalyzed cross dehydrogenative coupling (CDC) of indoles and benzylic C–H bonds. Adv Synth Catal 357:950–954

    Article  CAS  Google Scholar 

  29. Zhang H-J, Su F, Wen T-B (2015) Copper-catalyzed direct C2-benzylation of indoles with alkylarenes. J Org Chem 80:11322–11329

    Article  CAS  PubMed  Google Scholar 

  30. Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M (2018) A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem Soc Rev 47:6603–6743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rasheed OK, Sun B (2018) Advances in development of C–H activation/functionalization using a catalytic directing group. ChemistrySelect 3:5689–5708

    Article  CAS  Google Scholar 

  32. Okugawa N, Moriyama K, Togo H (2017) Introduction of quinolines and isoquinolines onto nonactivated α-C–H bond of tertiary amides through a radical pathway. J Org Chem 82:170–178

    Article  CAS  PubMed  Google Scholar 

  33. Li Z, Li C-J (2005) CuBr-catalyzed direct indolation of tetrahydroisoquinolines via cross-dehydrogenative coupling between sp3 C–H and sp2 C–H bonds. J Am Chem Soc 127:6968–6969

    Article  CAS  PubMed  Google Scholar 

  34. Ghobrial M, Harhammer K, Mihovilovic MD, Schnürch M (2009) Facile, solvent and ligand free iron catalyzed direct functionalization of N-protected tetrahydroisoquinolines and isochroman. Chem Commun 46:8836–8838

    Article  CAS  Google Scholar 

  35. Liu P, Zhou C-Y, Xiang S, Che C-M (2010) Highly efficient oxidative carbon–carbon coupling with SBA-15-support iron terpyridine catalyst. Chem Commun 46:2739–2741

    Article  CAS  Google Scholar 

  36. Ohta M, Quick MP, Yamaguchi J, Wünsch B, Itami K (2009) Fe-catalyzed oxidative coupling of heteroarenes and methylamines. Chem Asian J 4:1416–1419

    Article  CAS  PubMed  Google Scholar 

  37. Shirakawa E, Yoneda T, Moriya K, Ota K, Uchiyama N, Nishikawa R, Hayashi T (2011) Iron-catalyzed oxidative coupling of alkylamines with arenes, nitroalkanes, and 1,3-dicarbonyl compounds. Chem Lett 40:1041–1043

    Article  CAS  Google Scholar 

  38. Marset X, Pérez JM, Ramón DJ (2016) Cross-dehydrogenative coupling reaction using copper oxide impregnated on magnetite in deep eutectic solvents. Green Chem 18:826–833

    Article  CAS  Google Scholar 

  39. Ho HE, Ishikawa Y, Asao N, Yamamoto Y, Jin T (2015) Highly efficient heterogeneous aerobic cross-dehydrogenative coupling via C–H functionalization of tertiary amines using a nanoporous gold skeleton catalyst. Chem Commun 51:12764–12767

    Article  CAS  Google Scholar 

  40. Liu Y, Wang C, Xue D, Xiao M, Li C, Xiao J (2017) Reactions catalysed by a binuclear copper complex: aerobic cross dehydrogenative coupling of N-aryl tetrahydroisoquinolines. Chem Eur J 23:3051–3061

    Article  CAS  PubMed  Google Scholar 

  41. Su W, Yu J, Li Z, Jiang Z (2011) Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines. J Org Chem 76:9144–9150

    Article  CAS  PubMed  Google Scholar 

  42. Yang F, Li J, Xie J, Huang Z-Z (2010) Copper-catalyzed cross dehydrogenative coupling reactions of tertiary amines with ketones or indoles. Org Lett 12:5214–5217

    Article  CAS  PubMed  Google Scholar 

  43. Huang L, Niu T, Wu J, Zhang Y (2011) Copper-catalyzed oxidative cross-coupling of N,N-dimethylanilines with heteroarenes under molecular oxygen. J Org Chem 76:1759–1766

    Article  CAS  PubMed  Google Scholar 

  44. Romo-Pérez A, Miranda LD, García A (2015) Synthesis of N-methyl-5,6-dihydrobenzo[c]phenanthridine and its sp3 C(6)–H bond functionalization via oxidative cross-dehydrogenative coupling reactions. Tetrahedron Lett 56:6669–6673

    Article  CAS  Google Scholar 

  45. Dutta B, Sharma V, Sassu N, Dang Y, Weerakkody C, Macharia J, Miao R, Howell AR, Suib SL (2017) Cross dehydrogenative coupling of N-aryltetrahydroisoquinolines (sp3 C–H) with indoles (sp2 C–H) using a heterogeneous mesoporous manganese oxide catalyst. Green Chem 19:5350–5355

    Article  CAS  Google Scholar 

  46. Patil MR, Dedhia NP, Kapdi AR, Kumar AV (2018) Cobalt(II)/N-hydroxyphthalimide-catalyzed cross-dehydrogenative coupling reaction at room temperature under aerobic condition. J Org Chem 83:4477–4490

    Article  CAS  PubMed  Google Scholar 

  47. Wu C-J, Zhong J-J, Meng Q-Y, Lei T, Gao X-W, Tung C-H, Wu L-Z (2015) Cobalt-catalyzed cross-dehydrogenative coupling reaction in water by visible light. Org Lett 17:884–887

    Article  CAS  PubMed  Google Scholar 

  48. Tanoue A, Yoo W-J, Kobayashi S (2013) Antimony/N-hydroxyphthalimide as a catalyst system for cross-dehydrogenative coupling reactions under aerobic conditions. Adv Synth Catal 355:269–273

    CAS  Google Scholar 

  49. Alagiri K, Kumara GSR, Prabhu KR (2011) An oxidative cross-dehydrogenative-coupling reaction in water using molecular oxygen as the oxidant: vanadium catalyzed indolation of tetrahydroisoquinolines. Chem Commun 47:11787–11789

    Article  CAS  Google Scholar 

  50. Jones KM, Karier P, Klussmann M (2012) C1-substituted N-alkyl tetrahydroisoquinoline derivatives through V-catalyzed oxidative coupling. ChemCatChem 4:51–54

    Article  CAS  Google Scholar 

  51. Wang M-Z, Zhou C-Y, Wong M-K, Che C-M (2010) Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C–H bond and Lewis acid catalysis. Chem Eur J 16:5723–5735

    Article  CAS  PubMed  Google Scholar 

  52. Dai C, Meschini F, Narayanam JMR, Stephenson CRJ (2012) Friedel-Crafts amidoalkylation via thermolysis and axidative photocatalysis. J Org Chem 77:4425–4431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shelar DP, Li T-T, Chen Y, Fu W-F (2015) Platinum(II) Schiff base complexes as photocatalysts for visible-light-induced cross-dehydrogenative coupling reactions. ChemPlusChem 80:1541–1546

    Article  CAS  PubMed  Google Scholar 

  54. Zhong J-J, Meng Q-Y, Wang G-X, Liu Q, Chen B, Feng K, Tung C-H, Wu L-Z (2013) A highly efficient and selective aerobic cross-dehydrogenative-coupling reaction photocatalyzed by a platinum(II) terpyridyl complex. Chem Eur J 19:6443–6450

    Article  CAS  PubMed  Google Scholar 

  55. Chen W, Zheng H, Pan X, Xie Z, Zan X, Sun B, Liu L, Lou H (2014) A metal-free cross-dehydrogenative coupling of N-carbamoyl tetrahydroisoquinoline by sodium persulfate. Tetrahedron Lett 55:2879–2882

    Article  CAS  Google Scholar 

  56. Zhang Y, Teuscher KB, Ji H (2016) Direct α-heteroarylation of amides (α to nitrogen) and ethers through a benzaldehyde-mediated photoredox reaction. Chem Sci 7:2111–2118

    Article  CAS  PubMed  Google Scholar 

  57. Jones KM, Klussmann M (2012) Oxidative coupling of tertiary amines: scope, mechanism and challenges. Synlett 2012:159–162

    Article  CAS  Google Scholar 

  58. Ratnikov MO, Doyle MP (2013) Mechanistic investigation of oxidative Mannich reaction with tert-butyl hydroperoxide. The role of transition metal salt. J Am Chem Soc 135:1549–1557

    Article  CAS  PubMed  Google Scholar 

  59. Boess E, Sureshkumar D, Sud A, Wirtz C, Farès C, Klussmann M (2011) Mechanistic studies on a Cu-catalyzed aerobic oxidative coupling reaction with N-phenyl tetrahydroisoquinoline: structure of intermediates and the role of methanol as a solvent. J Am Chem Soc 133:8106–8109

    Article  CAS  PubMed  Google Scholar 

  60. Boess E, Schmitz C, Klussmann M (2012) A comparative mechanistic study of Cu-catalyzed oxidative coupling reactions with N-phenyltetrahydroisoquinoline. J Am Chem Soc 134:5317–5325

    Article  CAS  PubMed  Google Scholar 

  61. Scott M, Sud A, Boess E, Klussmann M (2014) Reaction progress kinetic analysis of a copper-catalyzed aerobic oxidative coupling reaction with N-phenyl tetrahydroisoquinoline. J Org Chem 79:12033–12040

    Article  CAS  PubMed  Google Scholar 

  62. Boess E, Wolf LM, Malakar S, Salamone M, Bietti M, Thiel W, Klussmann M (2016) Competitive hydrogen atom transfer to oxyl- and peroxyl radicals in the Cu-catalyzed oxidative coupling of N-aryl tetrahydroisoquinolines using tert-butyl hydroperoxide. ACS Catal 6:3253–3261

    Article  CAS  Google Scholar 

  63. Tsang AS-K, Jensen P, Hook JM, Hashmi ASK, Todd MH (2011) An oxidative carbon–carbon bond-forming reaction proceeds via an isolable iminium ion. Pure Appl Chem 83:655–665

    Article  CAS  Google Scholar 

  64. Cheng G-J, Song L-J, Yang Y-F, Zhang X, Wiest O, Wu Y-D (2013) Computational studies on the mechanism of the copper-catalyzed sp3-C–H cross-dehydrogenative coupling reaction. ChemPlusChem 78:943–951

    Article  CAS  PubMed  Google Scholar 

  65. Schweitzer-Chaput B, Klussmann M (2013) Brønsted acid catalyzed C–H functionalization of N-protected tetrahydroisoquinolines via intermediate peroxides. Eur J Org Chem 2013:666–671

    Article  CAS  Google Scholar 

  66. Pu F, Li Y, Song Y-H, Xiao J, Liu Z-W, Wang C, Liu Z-T, Chen J-G, Lu J (2016) Copper-catalyzed coupling of indoles with dimethylformamide as a methylenating reagent. Adv Synth Catal 358:539–542

    Article  CAS  Google Scholar 

  67. Deb ML, Borpatra PJ, Saikia PJ, Baruah PK (2017) Introducing tetramethylurea as a new methylene precursor: a microwave-assisted RuCl3-catalyzed cross dehydrogenative coupling approach to bis(indolyl)methanes. Org Biomol Chem 15:1435–1443

    Article  CAS  PubMed  Google Scholar 

  68. Kaswan P, Nandwana NK, DeBoef B, Kumar A (2016) Vanadyl acetylacetonate catalyzed methylenation of imidazo[1,2-a]pyridines by using dimethylacetamide as a methylene source: direct access to bis(imidazo[1,2-a]pyridin-3-yl)methanes. Adv Synth Catal 358:2108–2115

    Article  CAS  Google Scholar 

  69. Yang J, Wang Z, Pan F, Li Y, Bao W (2010) CuBr-catalyzed selective oxidation of N-azomethine: highly efficient synthesis of methine-bridged bis-indole compounds. Org Biomol Chem 8:2975–2978

    Article  CAS  PubMed  Google Scholar 

  70. Li G, Nakamura H (2016) Synthesis of 2-indolyltetrahydroquinolines by zinc(II)-catalyzed intramolecular hydroarylation-redox cross-dehydrogenative coupling of N-propargylanilines with indoles. Angew Chem Int Ed 55:6758–6761

    Article  CAS  Google Scholar 

  71. Wang H, Dong M, Liu C, Zhang D (2018) Theoretical insight into the zinc(II)-catalyzed synthesis of 2-indolyltetrahydroquinolines from N-propargylanilines and indoles: cross-dehydrogenative coupling with temporally separated catalytic activity. Catal Sci Technol 8:1997–2007

    Article  CAS  Google Scholar 

  72. Meng Q-Y, Zhong J-J, Liu Q, Gao X-W, Zhang H-H, Lei T, Li Z-J, Feng K, Chen B, Tung C-H, Wu L-Z (2013) A cascade cross-coupling hydrogen evolution reaction by visible light catalysis. J Am Chem Soc 135:19052–19055

    Article  CAS  PubMed  Google Scholar 

  73. Segundo MS, Correa A (2018) Cross-dehydrogenative coupling reactions for the functionalization of α-amino acid derivatives and peptides. Synthesis 50:2853–2866

    Article  CAS  Google Scholar 

  74. Sonobe T, Oisaki K, Kanai M (2012) Catalytic aerobic production of imines en route to mild, green, and concise derivatizations of amines. Chem Sci 3:3249–3255

    Article  CAS  Google Scholar 

  75. Zhu Z-Q, Xiao L-J, Zhou C-C, Song H-L, Xie Z-B, Le Z-G (2018) A visible-light-promoted cross-dehydrogenative-coupling reaction of N-arylglycine esters with imidazo[1,2-a]pyridines. Tetrahedron Lett 59:3326–3331

    Article  CAS  Google Scholar 

  76. Zhu Z-Q, Xiao L-J, Chen Y, Xie Z-B, Zhu H-B, Le Z-G (2018) A highly efficient copper(II)-catalyzed cross-dehydrogenative-coupling reaction of N-arylglycine esters with 2-arylimidazo[1,2-a]pyridines. Synthesis 50:2775–2783

    Article  CAS  Google Scholar 

  77. Wu X, Zhang D, Zhou S, Gao F, Liu H (2015) Site-specific indolation of proline-based peptides via copper(II)-catalyzed oxidative coupling of tertiary amine N-oxides. Chem Commun 51:12571–12573

    Article  CAS  Google Scholar 

  78. Liu Z-Q, Li Z (2016) Radical-promoted site-specific cross dehydrogenative coupling of heterocycles with nitriles. Chem Commun 52:14278–14281

    Article  CAS  Google Scholar 

  79. Leskinen MV, Yip K-T, Valkonen A, Pihko PM (2012) Palladium-catalyzed dehydrogenative β′-functionalization of β-keto esters with indoles at room temperature. J Am Chem Soc 134:5750–5753

    Article  CAS  PubMed  Google Scholar 

  80. Nimje RY, Leskinen MV, Pihko PM (2013) A three-component palladium-catalyzed oxidative C–C coupling reaction: a domino process in two dimensions. Angew Chem Int Ed 52:4818–4822

    Article  CAS  Google Scholar 

  81. Leskinen MV, Madarász Á, Yip K-T, Vuorinen A, Pápai I, Neuvonen AJ, Pihko PM (2014) Cross-dehydrogenative couplings between indoles and β-keto esters: ligand-assisted ligand tautomerization and dehydrogenation via a proton-assisted electron transfer to Pd(II). J Am Chem Soc 136:6453–6462

    Article  CAS  PubMed  Google Scholar 

  82. Zhu Y, Liu M, Jia F, Yuan J, Gao Q, Lian M, Wu A (2012) Metal-free sp3 C–H bond dual-(het)arylation: I2-promoted domino process to construct 2,2-bisindolyl-1-arylethanones. Org Lett 14:3392–3395

    Article  CAS  PubMed  Google Scholar 

  83. Mo H, Bao W (2009) Efficient palladium-catalyzed oxidative indolation of allylic compounds with DDQ via sp3 C–H bond activation and carbon-carbon bond formation under mild conditions. Adv Synth Catal 351:2845–2849

    Article  CAS  Google Scholar 

  84. Yu Y, Jiao L, Wang J, Wang H, Yu C, Hao E, Boens N (2017) Bu4NI/tBuOOH catalyzed, α-regioselective cross-dehydrogenative coupling of BODIPY with allylic alkenes and ethers. Chem Commun 53:581–584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation (project #18-13-00365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Khalymbadzha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fatykhov, R.F., Khalymbadzha, I.A., Chupakhin, O.N. (2019). Functionalization of Aromatic N-Heterocycles with C(sp3)–H Sources via CDC Reactions. In: Srivastava, A., Jana, C. (eds) Heterocycles via Cross Dehydrogenative Coupling. Springer, Singapore. https://doi.org/10.1007/978-981-13-9144-6_1

Download citation

Publish with us

Policies and ethics