Skip to main content

Role of Microbial Hydrolases in Bioremediation

  • Chapter
  • First Online:
Microbes and Enzymes in Soil Health and Bioremediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 16))

Abstract

Bioremediation deals with the utilization of microorganisms to degrade environmental pollutants. Bioremediation principally depends upon those microorganisms which enzymatically attack the pollutants and convert them to less toxic or innocuous products. A large number of enzymes from bacteria, fungi, and plants degrade perilous organic pollutants to compounds like CO2, CH4, H2O, and biomass without harmfully disturbing the environment. Bioremediation is an economically and environmentally pleasant biotechnological approach empowered by microbial enzymes. The knowledge of the mechanisms of bioremediation-related enzymes like hydrolases has been extensively studied in the present review. Microbial breakdown and environmental reactions like hydrolysis, a peculiar feature of lipases and esterases, can renovate toxic compounds into less toxic compounds. Bioremediation using these hydrolytic enzymes is a usually safe, cheaper, and eco-friendly system in eliminating the pollutants from the environment. The present review attempts to afford descriptive information on the lipases/esterases sourced from a number of microorganisms involved in the biodegradation of a broad series of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK (2009) A database of oxygenases involved in biodegradation. BMC Res Notes 2:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Austin HP, Allena MD et al (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. www.pnas.org/cgi/doi/10.1073/pnas.1718804115

  • Baffi MA, Rocha LG, Soares de Sousa C, Ceron CR, Bonetti AM (2008) Esterase enzymes involved in pyrethroid and organophosphate resistance in a Brazilian population of Riphicephallus (Boophilus) microplus (Acari, Ixodidae). Mol Biochem Parasitol 160:70–73

    Article  CAS  PubMed  Google Scholar 

  • Basso RC, Meirelles AJAA, Batista EAC (2012) Liquid-liquid equilibrium of pseudoternary systems containing glycerol + ethanol + ethylic biodiesel from crambe oil (Crambe abyssinica) at T/K = (289.2, 318.2, 338.2) and thermodynamic modeling. Fluid Phase Equilib 333:55–62

    Article  CAS  Google Scholar 

  • Beena AK, Geevarghese PI, Jayavardanan KK (2010) Detergent potential of a spoilage protease enzyme liberated by a psychrotrophic spore former isolated from sterilized skim milk. Am J Food Technol 7:89–95

    Article  CAS  Google Scholar 

  • Bhardwaj H, Gupta R, Tiwari A (2012) Microbial population associated with plastic degradation open access scientific reports 1:1–4

    Google Scholar 

  • Bhatt P, Gangola S, Chaudhary P, Khati P, Kumar G, Sharma A, Srivastava A (2019) Pesticide induced up-regulation of esterase and aldehyde dehydrogenase in indigenous Bacillus spp. Bioremed J 23:42. https://doi.org/10.1080/10889868.2019.1569586

    Article  CAS  Google Scholar 

  • Biundo A, Ribitsch D, Steinkellner G, Gruber K, Guebitz GM (2016) Polyester hydrolysis is enhanced by a truncated esterase: less is more. Biotechnol J 10:1308–1322

    Google Scholar 

  • Brown LD, Cologgi KF, Ulrich AC (2016) Bioremediation of oil spills on land. In: Fingas M (ed) Oil spill science and technology. Elsevier Inc, Amsterdam, pp 699–729

    Chapter  Google Scholar 

  • Chen D, Kong X, Wu S, Huang J, Cheng X, Jiang J (2019) An esterase AppH for the hydrolysis of 2-(4-aryloxyphenoxy) propionate herbicides in Sphingobium sp. strain C3. Int Biodeterior Biodegrad 136:34–40

    Article  CAS  Google Scholar 

  • Das R, Li G, Mai B, An T (2018) Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation 1:640–641:798–806

    Google Scholar 

  • El-Morsy EM, Hassan HM, Ahmed E (2017) Biodegradative activities of fungal isolates from plastic contaminated soils. Mycosphere 8:1071–1087

    Article  Google Scholar 

  • Fan X, Liang W, Li Y, Li H, Liu X (2017) Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables. Microb Cell Factories 16:1–12

    Article  CAS  Google Scholar 

  • Fetzner S, Lingens F (1984) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58:641–685

    Google Scholar 

  • Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. F Microbiol Rev 58:641–685

    CAS  Google Scholar 

  • Galego LG, Ceron CR, Carareto MA (2006) Characterization of esterases in a Brazilian population of Zaprionus indianus (Diptera: Drosophilidae). Genetica 126:89–99

    Article  CAS  PubMed  Google Scholar 

  • Gangola S, Sharma A, Bhatt P, Khati P, Chaudhary P (2018) Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Scientific Rep. https://doi.org/10.1038/s41598-018-31082-5

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–25

    Article  CAS  Google Scholar 

  • Goda SK, Elsayed IE, Khodair TA, EIayed W, Mohamed ME (2010) Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylesterase in soil bacteria. Biodegradation 21:903–913

    Article  CAS  PubMed  Google Scholar 

  • Han DS, Kwon DY, Rhee JS (1988) Lipase-catalyzed reactions for fats and oils in a non-polar solvent. Kor J Appl Microbiol Bioeng 16:250–258

    CAS  Google Scholar 

  • Have RT, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413

    Article  PubMed  CAS  Google Scholar 

  • Hermansyah H, Wijanarko A, Gozan M et al (2007) Consecutive reaction model for triglyceride hydrolysis using lipase. J Teknologi 2:151–157

    Google Scholar 

  • Hocevar L, Soares VRB, Oliveira FS, Korn MGA, Teixeira LSG (2012) Application of multivariate analysis in mid-infrared spectroscopy as a tool for the evaluation of waste frying oil blends. J Am Oil Chemists Soc 89:781–786

    Article  CAS  Google Scholar 

  • Hu J, Cai W, Wang C, Du X, Lin J, Cai J (2018) Purification and characterization of alkaline lipase production by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment. Biotechnol Biotechnol Equip 32:583–590

    Article  CAS  Google Scholar 

  • Hur BK, Woo DJ, Kim CB (1999) Hydrolysis mechanisms of fish oil by lipase-100T. J Microbiol Biotechnol 9:624–630

    CAS  Google Scholar 

  • Islam F, Roy N (2018) Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes. https://doi.org/10.1186/s13104-018-3558-4

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  PubMed  Google Scholar 

  • Jamwal S, Kumar R, Sharma A, Kanwar SS (2017) Response surface methodology (RSM) approach for improved extracellular RNase production by a Bacillus sp. J Adv Microbiol 3:131–144

    Google Scholar 

  • Joseph B, Ramteke PW, Kumar PA (2006) Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis. J Gen Appl Microbiol 52:315–320

    Article  CAS  PubMed  Google Scholar 

  • Karigar CS, Rao S (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:1–11

    Article  CAS  Google Scholar 

  • Karmakar Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6:41–53

    Article  CAS  Google Scholar 

  • Khan S, Zaffar H, Irshad U, Ahmad R, Khan AR et al (2016) Biodegradation of malathion by Bacillus licheniformis strain ML-1. Arch Biol Sci Belgrade 68:51–59

    Article  Google Scholar 

  • Khan I, Nagarjuna R, Dutta JR, Ganesan R (2019) Enzyme-embedded degradation of poly(ε-caprolactone) using lipase-derived from probiotic Lactobacillus plantarum. ACS Omega 4:2844–2852. https://doi.org/10.1021/acsomega.8b02642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Park JW, Lee SE, Kim JE (2002) Formation of bound residues of hydroxybentazon by oxidoreductive catalysts in soil. J Agricult Food Chem 50:3507–3511

    Article  CAS  Google Scholar 

  • Koh JS, Ko YH, Kim GS (1992) Degradation of fats, oils and hydrocarbons by Acinetobacter calcoaceticus. Kor J Appl Microbiol Biotechnol 20:477–482

    CAS  Google Scholar 

  • Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL (2018) Diversity and niche of archaea in bioremediation. Archaea 2018:1–17

    Article  CAS  Google Scholar 

  • Kumar A, Kanwar SS (2011a) Synthesis of ethyl ferulate in organic medium using celite-immobilized lipase. Bioresour Technol 102:2162–2167

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kanwar SS (2011b) Synthesis of isopropyl ferulate using silica immobilized lipase in an organic medium. Enzyme Res 2011:1–8

    Article  CAS  Google Scholar 

  • Kumar A, Kanwar SS (2012a) Catalytic potential of a nitrocellulose membrane- immobilized lipase in aqueous and organic media. J Appl Polymers Sci 124:37–44

    Article  CAS  Google Scholar 

  • Kumar A, Kanwar SS (2012b) An innovative approach to immobilize lipase onto the natural fiber and its application for the synthesis of 2-octyl ferulate in an organic medium. Curr Biotechnol 1:240–248

    Article  Google Scholar 

  • Kumar A, Kanwar SS (2012c) Lipase production in solid state fermentation (SSF): recent developments and biotechnological applications. Dyn Biochem Process Biotechnol Mol Biol 6:13–27

    Google Scholar 

  • Kumar A, Kanwar SS (2012d) An efficient immobilization of Streptomyces sp. STL-D8 lipase onto photo-chemically modified cellulose-based natural fibers and its application in ethyl ferulate synthesis. Trends Carbohydrates Res 4:13–23

    CAS  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Indian J Environ 1:1079–1093

    Google Scholar 

  • Kumar S, Mathur A, Singh V, Nandy S, Kumar K, Negi S (2012) Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresour Technol 120:300–304

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Dhar K, Kanwar SS, Arora PK (2016) Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 2016:1–18

    Google Scholar 

  • Kumar A, Wu G, Wu Z, Liu Z (2018a) Improved catalytic properties of a serine hydroxymethyl transferase from Idiomarina loihiensis by site-directed mutagenesis. Intl J Biol Macromol 117:1216–1223

    Article  CAS  Google Scholar 

  • Kumar A, Patel SKS, Madan B, Poglu R et al (2018b) Immobilization of xylanase using protein inorganic hybrid system. J Microbiol Biotechnol. https://doi.org/10.1007/s12088-017-0700-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Wu G, Liu Z (2018c) Synthesis and characterization of cross-linked enzyme aggregates of serine hydroxyl methyltransferase from Idiomerina leihiensis. Intl J Biol Macromol 117:683–690

    Article  CAS  Google Scholar 

  • Kumar A, Patel SKS, Madan B, Poglu R, Listeri R, Jeong SH, Kim T, Haw JR, Kim SY, Kim IW, Lee JK (2018d) Immobilization of xylanase using protein inorganic hybrid system. J Microbiol Biotechnol. https://doi.org/10.1007/s12088-017-0700-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kundys A, Bialecka-Florjanczyk E, Fabiszewska A, Malajowicz J (2017) Candida antarctica lipase B as catalyst for cyclic esters synthesis, their polymerization and degradation of aliphatic polyesters. J Poly Environ 26:396–407

    Article  CAS  Google Scholar 

  • Lal R, Saxena DM (1982) Accumulation, metabolism and effects of organochlorine insecticides on microorganisms. Microbiol Rev 46:95–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Littlechild JA (2015) Archaeal enzymes and applications in industrial biocatalysts. Archaea 2015:1–10

    Article  CAS  Google Scholar 

  • Liu B, Peng X, Meng X (2018) Effective biodegradation of mycotoxin patulin by porcine pancreatic lipase. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00615

  • Lopes M, Miranda SM, Alves JM, Pereira AS, Belo I (2018) Waste cooking oils as feedstock for lipase and lipid-rich biomass production. Eur J Lipid Sci Technol 121:1–9

    Google Scholar 

  • Luo X, Zhang D, Zhou X, Du J, Zhang S, Liu Y (2018) Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S. Sci Rep 8:1–8

    Article  CAS  Google Scholar 

  • Mai C, Schormann W, Milstein O, Huttermann A (2000) Enhanced stability of laccase in the presence of phenolic compounds. Appl Microbiol Biotechnol 54:510–514

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (1999) Soil lipase activity-a useful indicator of oil biodegradation. Biotechnol Tech 13:859–863

    Article  CAS  Google Scholar 

  • Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 71:7548–7550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mita L, Sicac V, Guidad M, Nicoluccia C, Grimaldia T, Caputoe L, Biancoa M, Rossie S, Bencivengae U, Eldinf MSM, Tufano MA, Mita DG (2010) Employment of immobilised lipase from Candida rugosa for the bioremediation of waters polluted by dimethyl phthalate, as a model of endocrine disruptors. J Mol Cata B: Enzymatic 62:133–141

    Article  CAS  Google Scholar 

  • Mohammed AS, Kapri A, Goel R (2011) Heavy metal pollution: source, impact, and remedies. Biomanagement of metal-contaminated soils. https://doi.org/10.1007/978-94-007-1914-9

    Google Scholar 

  • Nunn WD (1986) A molecular view of fatty acid catabolism in Escherichia coli. Microbiology 50:179–192

    CAS  Google Scholar 

  • Nwobi BE, Ofoegbu O, Adesina OB (2006) Extraction and qualitative assessment of African sweet orange seed oil. Afr J Food Agricult Nutr 6:1–11

    Google Scholar 

  • Okino-Delgado CH, Prado DZD, Facanali R, Marques MMO, Nascimento AS, Fernandes CJDC, et al (2017) Bioremediation of cooking oil waste using lipases from wastes. PLoS ONE https://doi.org/10.1371/journal.pone.0186246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park CH, Kim YK, Yu HJ et al (1991) Microbial degradation of fats and oils in industrial wastewater. Kor J Appl Microbiol Biotechnol 19:88–93

    CAS  Google Scholar 

  • Park JM, Sewell T, Benedik MJ (2017) Cyanide bioremediation: the potential of engineered nitrilases. Appl Microbiol Biotechnol 101:3029–3042

    Article  CAS  PubMed  Google Scholar 

  • Patel SKS, Anwar MZ, Kumar A, Otari SV, Pagolu RT, Kim SY, Kim IW, Lee JK (2017) Fe2O3 yolk-shell particle-based laccase biosensor for efficient detection of 2,6-methoxyphenyl. Biochem Eng J 132:1. https://doi.org/10.1016/j.bej.2017.12.013

    Article  CAS  Google Scholar 

  • Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29:111–116

    Article  CAS  PubMed  Google Scholar 

  • Riffaldi R, Levi-Minzi R, Cardelli R, Palumbo S, Saviozzi A (2006) Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water Air Soil Pollut 170:3–15

    Article  CAS  Google Scholar 

  • Rigo E, Rigoni RE, Lodea P, Oliveira D, Freire DMG, Luccio MD (2008) Application of different lipases as pretreatment in the anaerobic treatment of wastewater. Environ Eng Sci 25:1243–1248

    Article  CAS  Google Scholar 

  • Riya P, Jagatpati T (2012) Biodegradation and bioremediation of pesticides in soil: its objectives, classification of pesticides, factors and recent developments. World J Sci Technol 2:36–41

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27:191–194

    Article  CAS  PubMed  Google Scholar 

  • Sahoo RK, Kumar M, Mohanty S, Sawyer M et al (2018) Statistical optimization for lipase production from solid waste of vegetable oil industry. Preparat Biochem Biotechnol 48:321–326

    Article  CAS  Google Scholar 

  • Salgado JM, Abrunhosa L, Venancio A, Domínguez JM, Belo I (2016) Combined bioremediation and enzyme production by Aspergillus sp. in the olive mill and winery wastewaters. Int Biodeterior Biodegrad 110:16–23

    Article  CAS  Google Scholar 

  • Sasikumar CS, Papinazath T (2003) Environmental management: bioremediation of polluted environment. In: Bunch MJ, Suresh VM, Kumaran TV (eds) Proceedings of the third international conference on environment and health, Chennai, India, 15–17 December 2003

    Google Scholar 

  • Sharma D, Sharma B, Shukla AK (2011) Biotechnological approach of microbial lipase: a review. Biotechnology 10:23–40

    Article  CAS  Google Scholar 

  • Sharma T, Sharma A, Kanwar SS (2016) Purification and characterization of an esterase from Bacillus pumilus. J Adv Biotechnol Bioeng 4:9–16

    Article  CAS  Google Scholar 

  • Sharma T, Sharma A, Kanwar SS (2017a) An overview on esterases: structure, classification, sources and their application. In: Rai V (ed) Recent advances in biotechnology, vol 2. Shree Publishers, New Delhi, pp 216–229

    Google Scholar 

  • Sharma A, Meena KR, Kanwar SS (2017b) Molecular characterization and bioinformatics studies of a lipase from Bacillus thermoamylovorans BHK67. Intl J Biol Macromol 107:2131–2140

    Article  CAS  Google Scholar 

  • Sharma A, Meena KR, Rana S, Singh M, Kanwar SS (2017c) Fabrication and functionalization of magnesium nanoparticle for lipase immobilization in n -propyl gallate synthesis. J King Saud University- Sci 29:536–546

    Article  Google Scholar 

  • Sharma A, Sharma T, Meena KR, Kanwar SS (2017d) Physical adsorption of lipase onto mesoporous silica. Intl J Curr Adv Res 6:3836–3841

    Google Scholar 

  • Sharma A, Sharma T, Gupta R, Kanwar SS (2017e) Correlation of enzyme activity and stabilities with extreme environments: complexities and flexibilities in adaptations. In Rai V (ed) Recent advances in biotechnology, vol 1. Shree Publishers New Delhi, pp 17–31

    Google Scholar 

  • Sharma A, Sharma T, Meena KR, Kumar A, Kanwar SS (2018a) High throughput synthesis of ethyl pyruvate by employing superparamagnetic iron nanoparticles-bound esterase. Process Biochem 71:109–117

    Article  CAS  Google Scholar 

  • Sharma A, Sharma T, Kanwar SS (2018b) Entrapment of Streptomyces sp. lipase in cupric-beads for methyl salicylate synthesis. Trends in Carbo Res 10:21–29

    CAS  Google Scholar 

  • Sharma A, Meena KR, Kanwar SS (2018c) Microbial thermo-tolerant and solvent- tolerant lipases and their applications. Curr Res Microbiol 2:1–15

    Google Scholar 

  • Shimada Y, Sugihara A, Nagao T, Tominaga Y (1992) Induction of Geotrichum candidum lipase by long-chain fatty acids. J Ferment Bioeng 74:77–80

    Article  CAS  Google Scholar 

  • Shon HO, Kyong HO, Tian D et al (2002) Degradation of fat, oil and grease (FOGs) by the lipase-producing bacterium Pseudomonas sp. strain D2D3. J Microbiol Biotechnol 12:583–591

    CAS  Google Scholar 

  • Singh B, Kaur J, Singh K (2012) Biodegradation of malathion by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU. World J Microbiol Biotechnol 28:1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Sood S, Sharma A, Sharma N, Kanwar SS (2016) Carboxylesterases: sources, characterization, and broader. Insight Enzyme Res 1:1–11

    Google Scholar 

  • Srivastava I, Sar D, Mukherjee P, Schwartz-Duval AS, Huang Z, Jaramillo C, Civantos IA et al (2019) Enzyme-catalysed biodegradation of carbon dots follow sequential oxidation in a time dependent manner. Nanoscale. https://doi.org/10.1039/C9NR00194H

    Article  CAS  PubMed  Google Scholar 

  • SureshKumar P, Thomas J, Poornima V (2018) Structural insights on bioremediation of polycyclic aromatic hydrocarbons using microalgae: a modeling-based computational study. Environ Monit Assess. https://doi.org/10.1007/s10661-017-6459-4

  • Tan KH, Gill CO (1985) Batch growth of Saccharomycopsis lipolytica on animal fats. Appl Microb Biotechnol 21:292–298

    Article  CAS  Google Scholar 

  • Tavano OL, Berenguer-Murcia A, Secundo F, Fernandez-Lafuente R (2018) Biotechnological applications of proteases in food technology. Comprehen Rev Food Sci food Saf 17:412–436

    Article  Google Scholar 

  • Thakur N, Kumar A, Sharma A, Bhalla TC, Kumar D (2018a) Purification and characterization of alkaline, thermostable and organic solvent stable protease from a mutant of Bacillus sp. Biocatal Agricult Biotechnol 16:217–224

    Article  Google Scholar 

  • Thakur R, Kumar A, Kumar S (2018b) Synthesis and characterization of cross-linked enzyme aggregates (CLEAs) of thermostable xylanase from Geobacillus thermodenitrificans X1. Process Biochem 80:72. https://doi.org/10.1016/j.procbio.2019.01.019

    Article  CAS  Google Scholar 

  • Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukihara T, Honda Y, Sakai R, Watanabe T (2006) Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. J Biotechnol 126:431–439

    Article  CAS  PubMed  Google Scholar 

  • Vasileva-Tonkova E, Galabova D (2003) Hydrolytic enzymes and surfactants of bacterial isolates from lubricant contaminated wastewater. Z Naturforsch 58:87–92

    Article  CAS  Google Scholar 

  • Wang G, Liu Y (2016) Diazinon degradation by a novel strain Ralstonia sp. DI-3 and X-ray crystal structure determination of the metabolite of diazinon. J Biosci 41:359–366

    Article  CAS  PubMed  Google Scholar 

  • Wang BZ, Gou P, Hang BJ, Li L, He J et al (2009) Cloning of a novel pyrethroid hydrolyzing carboxylesterase gene from Sphingobium sp. Appl Environ Microbiol 75:5496–5500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Chen M, Shan G, Chen P, Cui S, Yi S, Zhu L (2017) Bioaccumulation and biomagnification of emerging bisphenol analogs in aquatic organisms from Taihu Lake, China. Sci Total Environ 598:814–820

    Article  CAS  PubMed  Google Scholar 

  • Williams PP (1977) Metabolism of synthetic organic pesticides by anaerobic microorganisms. Residue Rev 66:63–135

    CAS  PubMed  Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Xu B, Ding J, Liu L, Zhang X et al (2013) Heterologous expression and characterization of a malathion-hydrolyzing carboxylesterase from a thermophilic bacterium, Alicyclobacillus tengchogensis. Biotechnol Lett 35:1283–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CR, Jian JZ (2010) Recent advance in biodegradation in China: new microorganism and pathway, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochem 45:1937–1943

    Article  CAS  Google Scholar 

  • Yoshida S, Hiraga K, Takehana T et al (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199

    Article  CAS  PubMed  Google Scholar 

  • Yue F, Lishuang Z, Jing W, Ying Z, Bangce YE (2017) Biodegradation of phthalate esters by a newly isolated Acinetobacter sp. strain LMB-5 and characteristics of its esterase. Pedosphere 27:606–615

    Article  Google Scholar 

  • Yuniati MD (2018) Bioremediation of petroleum contaminated soil: a review. Eath Environ Sci 118:1–7

    Article  Google Scholar 

  • Zhang X, Liu L, Zhang S et al (2016) Biodegradation of dimethyl phthalate by freshwater unicellular cyanobacteria. Biomed Res Int 2016:1–8

    Google Scholar 

Download references

Acknowledgments

The financial support in the form of fellowship (DST/INSPIRE Fellowship/2013/1036; IF 131077) to one of the authors (AS) by Department of Science and Technology, New Delhi (India) is thankfully acknowledged.

Conflict of Interest

The authors declare no conflict of interests publishing this article in this book.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Sharma, T., Sharma, T., Sharma, S., Kanwar, S.S. (2019). Role of Microbial Hydrolases in Bioremediation. In: Kumar, A., Sharma, S. (eds) Microbes and Enzymes in Soil Health and Bioremediation. Microorganisms for Sustainability, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-13-9117-0_7

Download citation

Publish with us

Policies and ethics