Skip to main content

Mechanism of Quality Control of Nascent Membrane Proteins

  • Chapter
  • First Online:
Advances in Membrane Proteins
  • 512 Accesses

Abstract

Membrane proteins consist of nearly 20% of human proteome and perform a variety of essential functions for cell physiology. It is estimated that ~5000 membrane proteins are synthesized and inserted into the membrane at the endoplasmic reticulum (ER). Folding and maturation of nascent membrane proteins are complex and error-prone processes. Membrane proteins failed to properly fold and assemble are eliminated by a quality control process termed ER-associated degradation (ERAD) pathway. During ERAD, membrane proteins are recognized, modified with ubiquitin chain, extracted from the membrane, and finally degraded by the cytoplasmic 26S proteasome. The ERAD pathway targets majority of non-native proteins as well as some regulatory proteins in many cellular compartments, including ER lumen, ER membrane and nuclear membrane. Here, I review the protein degradation machineries and key steps involved in membrane protein degradation from the ER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arteaga MF, et al. An amphipathic helix targets serum and glucocorticoid-induced kinase 1 to the endoplasmic reticulum-associated ubiquitin-conjugation machinery. Proc Natl Acad Sci U S A. 2006;103(30):11178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagola K, et al. Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases. Mol Cell. 2013;50(4):528–39.

    Article  CAS  PubMed  Google Scholar 

  • Baker BM, Tortorella D. Dislocation of an endoplasmic reticulum membrane glycoprotein involves the formation of partially dislocated ubiquitinated polypeptides. J Biol Chem. 2007;282(37):26845–56.

    Article  CAS  PubMed  Google Scholar 

  • Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016;353(6294):aac4354.

    Article  PubMed  CAS  Google Scholar 

  • Baldridge RD, Rapoport TA. Autoubiquitination of the Hrd1 ligase triggers protein Retrotranslocation in ERAD. Cell. 2016;166(2):394–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazirgan OA, Hampton RY. Cue1p is an activator of Ubc7p E2 activity in vitro and in vivo. J Biol Chem. 2008;283(19):12797–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A, et al. Hepatic Sel1L-Hrd1 ER-associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH. EMBO J. 2018;37(22):e99277.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blythe EE, et al. Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP∗NPLOC4∗UFD1L is enhanced by a mutation that causes multisystem proteinopathy. Proc Natl Acad Sci U S A. 2017;114(22):E4380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodnar NO, Rapoport TA. Molecular mechanism of substrate processing by the Cdc48 ATPase complex. Cell. 2017;169(4):722–735.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braakman I, Bulleid NJ. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 2011;80:71–99.

    Article  CAS  PubMed  Google Scholar 

  • Braakman I, Hebert DN. Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2013;5(5):a013201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brodsky JL. Cleaning up: ER-associated degradation to the rescue. Cell. 2012;151(6):1163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodsky JL, Skach WR. Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol. 2011;23(4):464–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burr ML, et al. MHC class I molecules are preferentially ubiquitinated on endoplasmic reticulum luminal residues during HRD1 ubiquitin E3 ligase-mediated dislocation. Proc Natl Acad Sci U S A. 2013;110(35):14290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho P, Goder V, Rapoport TA. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell. 2006;126(2):361–73.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho P, Stanley AM, Rapoport TA. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell. 2010;143(4):579–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitwood PJ, et al. EMC is required to initiate accurate membrane protein Topogenesis. Cell. 2018;175:1507–1519.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson JC, Ye Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol. 2014;21(4):325–35.

    Article  CAS  PubMed  Google Scholar 

  • Christianson JC, et al. OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol. 2008;10(3):272–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Biochim Biophys Acta. 2012;1824(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  • Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169(5):792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denic V, Quan EM, Weissman JS. A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell. 2006;126(2):349–59.

    Article  CAS  PubMed  Google Scholar 

  • Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399–434.

    Article  CAS  PubMed  Google Scholar 

  • Dove KK, et al. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms. EMBO Rep. 2016;17(8):1221–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis RJ. Revisiting the Anfinsen cage. Fold Des. 1996;1(1):R9–15.

    Article  CAS  PubMed  Google Scholar 

  • Ernst R, et al. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol Cell. 2009;36(1):28–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feige MJ, Hendershot LM. Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol Cell. 2013;51(3):297–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foote PK, Statsyuk AV. Monitoring PARKIN RBR ubiquitin ligase activation states with UbFluor. Curr Protoc Chem Biol. 2018;10(3):e45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foresti O, et al. Quality control of inner nuclear membrane proteins by the Asi complex. Science. 2014;346(6210):751–5.

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt EJ, Olzmann JA, Kopito RR. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol. 2011;18(10):1147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grice GL, Nathan JA. The recognition of ubiquitinated proteins by the proteasome. Cell Mol Life Sci. 2016;73(18):3497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev. 2012;92(2):537–76.

    Article  CAS  PubMed  Google Scholar 

  • Guna A, et al. The ER membrane protein complex is a transmembrane domain insertase. Science. 2018;359(6374):470–3.

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara M, et al. Posttranscriptional regulation of glycoprotein quality control in the endoplasmic reticulum is controlled by the E2 Ub-conjugating enzyme UBC6e. Mol Cell. 2016;63(5):753–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl FU. Cellular homeostasis and aging. Annu Rev Biochem. 2016;85:1–4.

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU. Protein misfolding diseases. Annu Rev Biochem. 2017;86:21–6.

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–79.

    Article  CAS  PubMed  Google Scholar 

  • Hipp MS, Park SH, Hartl FU. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol. 2014;24(9):506–14.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch C, et al. The ubiquitylation machinery of the endoplasmic reticulum. Nature. 2009;458(7237):453–60.

    Article  CAS  PubMed  Google Scholar 

  • Khmelinskii A, et al. Protein quality control at the inner nuclear membrane. Nature. 2014;516(7531):410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol. 2018;217(1):51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleizen B, Braakman I. Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol. 2004;16(4):343–9.

    Article  CAS  PubMed  Google Scholar 

  • Kowarik M, et al. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol Cell. 2002;10(4):769–78.

    Article  CAS  PubMed  Google Scholar 

  • Li W, et al. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature. 2007;446(7133):333–7.

    Article  CAS  PubMed  Google Scholar 

  • Meacham GC, et al. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol. 2001;3(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  • Mehnert M, Sommer T, Jarosch E. Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. Nat Cell Biol. 2014;16(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  • Mehrtash AB, Hochstrasser M. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol. 2018; https://doi.org/10.1016/j.semcdb.2018.09.013.

    Article  CAS  Google Scholar 

  • Morito D, et al. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell. 2008;19(4):1328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller B, et al. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci U S A. 2008;105(34):12325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsukasa K, et al. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell. 2008;132(1):101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neutzner A, et al. A systematic search for endoplasmic reticulum (ER) membrane-associated RING finger proteins identifies Nixin/ZNRF4 as a regulator of calnexin stability and ER homeostasis. J Biol Chem. 2011;286(10):8633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda-Shimizu Y, Hendershot LM. Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp. Mol Cell. 2007;28(4):544–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omura T, et al. A ubiquitin ligase HRD1 promotes the degradation of Pael receptor, a substrate of Parkin. J Neurochem. 2006;99(6):1456–69.

    Article  CAS  PubMed  Google Scholar 

  • Powers RE, et al. Reconstitution of the tubular endoplasmic reticulum network with purified components. Nature. 2017;543(7644):257–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt WB, et al. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2015;55:353–71.

    Article  CAS  PubMed  Google Scholar 

  • Preston GM, Brodsky JL. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J. 2017;474(4):445–69.

    Article  CAS  PubMed  Google Scholar 

  • Rapoport TA, Li L, Park E. Structural and mechanistic insights into protein translocation. Annu Rev Cell Dev Biol. 2017;33:369–90.

    Article  CAS  PubMed  Google Scholar 

  • Ron D, Harding HP. Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb Perspect Biol. 2012;4(12):pii: a013177.

    Article  CAS  Google Scholar 

  • Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 2009;10(6):398–409.

    Article  CAS  PubMed  Google Scholar 

  • Sato BK, et al. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol Cell. 2009;34(2):212–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoebel S, et al. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature. 2017;548(7667):352–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao S, Hegde RS. Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol. 2011;27:25–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao S, Hegde RS. Target selection during protein quality control. Trends Biochem Sci. 2016;41(2):124–37.

    Article  CAS  PubMed  Google Scholar 

  • Shurtleff MJ, et al. The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. Elife. 2018;7:pii: e37018.

    Article  Google Scholar 

  • Skach WR. Cellular mechanisms of membrane protein folding. Nat Struct Mol Biol. 2009;16(6):606–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sluimer J, Distel B. Regulating the human HECT E3 ligases. Cell Mol Life Sci. 2018;75(17):3121–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MH, Ploegh HL, Weissman JS. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science. 2011;334(6059):1086–90.

    Article  CAS  PubMed  Google Scholar 

  • Stein A, et al. Key steps in ERAD of luminal ER proteins reconstituted with purified components. Cell. 2014;158(6):1375–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanton E, Bulleid NJ. Protein folding and translocation across the endoplasmic reticulum membrane. Mol Membr Biol. 2003;20(2):99–104.

    Article  CAS  PubMed  Google Scholar 

  • van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol. 2005;40(4):191–228.

    Article  PubMed  CAS  Google Scholar 

  • Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol. 2008;9(12):944–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Delbruck M, et al. The CUE domain of Cue1 aligns growing ubiquitin chains with Ubc7 for rapid elongation. Mol Cell. 2016;62(6):918–28.

    Article  CAS  Google Scholar 

  • Wang X, et al. Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates. J Cell Biol. 2009;187(5):655–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol Cell. 2011;42(6):758–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wangeline MA, Vashistha N, Hampton RY. Proteostatic tactics in the strategy of sterol regulation. Annu Rev Cell Dev Biol. 2017;33:467–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber A, et al. Sequential poly-ubiquitylation by specialized conjugating enzymes expands the versatility of a quality control ubiquitin ligase. Mol Cell. 2016;63(5):827–39.

    Article  CAS  PubMed  Google Scholar 

  • Wei J, et al. HRD1-ERAD controls production of the hepatokine FGF21 through CREBH polyubiquitination. EMBO J. 2018;37(22):e98942.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu X, Rapoport TA. Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol. 2018;53:22–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, et al. SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. Cell Rep. 2012;2(6):1633–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol. 2016;18(6):579–86.

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol. 2009;10(11):755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in the laboratory of Z.-R. Z. is supported by the National Key R&D Program of China (2016YFA0501903), the National Natural Science Foundation of China (31670780), and the 1000 Young Talent Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-Rong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, ZR. (2019). Mechanism of Quality Control of Nascent Membrane Proteins. In: Cao, Y. (eds) Advances in Membrane Proteins. Springer, Singapore. https://doi.org/10.1007/978-981-13-9077-7_6

Download citation

Publish with us

Policies and ethics