Skip to main content

A Historical Perspective of G Protein-Coupled Receptor Structural Biology

  • Chapter
  • First Online:
Advances in Membrane Proteins
  • 512 Accesses

Abstract

G protein-coupled receptors (GPCRs) are the largest family of integral membrane proteins. With more than 800 members, they play an important role in mediating cell signaling across the cytoplasmic membrane to activate downstream proteins such as G proteins and β-arrestins. The first GPCR crystal structure determined was bovine rhodopsin in 2000. Since 2007, there have been more than 300 crystal structures and 12 cryo-EM structures published, while those numbers keep growing. This article is aimed at providing some historical perspectives of this so-called golden age of GPCR structural biology, as well as some new insights from the structures into the mechanism of GPCR signaling at molecular and atomic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appleton KM, et al. Development of inhibitors of heterotrimeric Galphai subunits. Bioorg Med Chem. 2014;22(13):3423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayoub MA. Small molecules targeting heterotrimeric G proteins. Eur J Pharmacol. 2018;826:169–78.

    Article  CAS  PubMed  Google Scholar 

  • Ayoub MA, et al. Inhibition of heterotrimeric G protein signaling by a small molecule acting on Galpha subunit. J Biol Chem. 2009;284(42):29136–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayturk UM, et al. Somatic activating mutations in GNAQ and GNA11 are associated with congenital hemangioma. Am J Hum Genet. 2016;98(4):789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzi M, et al. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A. 2003;100(20):11406–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu JM, et al. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell. 2005;122(2):261–73.

    Article  CAS  PubMed  Google Scholar 

  • Bianco P, et al. Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gsalpha-mutated skeletal progenitor cells. J Clin Invest. 1998;101(8):1737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonacci TM, et al. Differential targeting of Gbetagamma-subunit signaling with small molecules. Science. 2006;312(5772):443–6.

    Article  CAS  PubMed  Google Scholar 

  • Bond RA, et al. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the beta 2-adrenoceptor. Nature. 1995;374(6519):272–6.

    Article  CAS  PubMed  Google Scholar 

  • Chidiac P, et al. Inverse agonist activity of beta-adrenergic antagonists. Mol Pharmacol. 1994;45(3):490–9.

    CAS  PubMed  Google Scholar 

  • Clark RB, Knoll BJ, Barber R. Partial agonists and G protein-coupled receptor desensitization. Trends Pharmacol Sci. 1999;20(7):279–86.

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, et al. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature. 1986;321(6065):75–9.

    Article  CAS  PubMed  Google Scholar 

  • Dore AS, et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature. 2014;511(7511):557–62.

    Article  CAS  PubMed  Google Scholar 

  • Eilers M, et al. Comparison of class A and D G protein-coupled receptors: common features in structure and activation. Biochemistry. 2005;44(25):8959–75.

    Article  CAS  PubMed  Google Scholar 

  • Francis JH, et al. GNAQ mutations in diffuse and solitary choroidal hemangiomas. Ophthalmology. 2018;126(5):759–63.

    Article  PubMed  Google Scholar 

  • Freissmuth M, et al. Suramin analogues as subtype-selective G protein inhibitors. Mol Pharmacol. 1996;49(4):602–11.

    CAS  PubMed  Google Scholar 

  • Granier S, et al. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012;485(7398):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamers-Casterman C, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.

    Article  CAS  PubMed  Google Scholar 

  • Henderson R, Unwin PN. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975;257(5521):28–32.

    Article  CAS  PubMed  Google Scholar 

  • Hohenegger M, et al. Gsalpha-selective G protein antagonists. Proc Natl Acad Sci U S A. 1998;95(1):346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenstein K, et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature. 2013;499(7459):438–43.

    Article  CAS  PubMed  Google Scholar 

  • Hurowitz EH, et al. Genomic characterization of the human heterotrimeric G protein alpha, beta, and gamma subunit genes. DNA Res. 2000;7(2):111–20.

    Article  CAS  PubMed  Google Scholar 

  • Jazayeri A, et al. Corrigendum: Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature. 2017;548(7665):122.

    Article  CAS  PubMed  Google Scholar 

  • Johnson RL, et al. Identification and targeted gene disruption of cAR3, a cAMP receptor subtype expressed during multicellular stages of Dictyostelium development. Genes Dev. 1993;7(2):273–82.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor N, et al. Structural evidence for a sequential release mechanism for activation of heterotrimeric G proteins. J Mol Biol. 2009;393(4):882–97.

    Article  CAS  PubMed  Google Scholar 

  • Klebanov N, et al. Use of targeted next-generation sequencing to identify activating hot spot mutations in cherry angiomas. JAMA Dermatol. 2019;155(2):211–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein PS, et al. A chemoattractant receptor controls development in Dictyostelium discoideum. Science. 1988;241(4872):1467–72.

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther. 2004;103(1):21–80.

    Article  CAS  PubMed  Google Scholar 

  • Landau EM, Rosenbusch JP. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A. 1996;93(25):14532–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis CA, et al. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989;340(6236):692–6.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Dilger JP. Decamethonium is a partial agonist at the nicotinic acetylcholine receptor. Synapse. 1993;13(1):57–62.

    Article  PubMed  Google Scholar 

  • Lodder EM, et al. GNB5 mutations cause an autosomal-recessive multisystem syndrome with Sinus Bradycardia and cognitive disability. Am J Hum Genet. 2016;99(3):704–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmann K, et al. Novel GNB1 mutations disrupt assembly and function of G protein heterotrimers and cause global developmental delay in humans. Hum Mol Genet. 2017;26(6):1078–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lokits AD, et al. Tracing the evolution of the heterotrimeric G protein alpha subunit in Metazoa. BMC Evol Biol. 2018;18(1):51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manglik A, et al. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature. 2012;485(7398):321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins L, et al. Computational analysis for GNAQ mutations: New insights on the molecular etiology of Sturge-Weber syndrome. J Mol Graph Model. 2017;76:429–40.

    Article  CAS  PubMed  Google Scholar 

  • Nathans J, Hogness DS. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell. 1983;34(3):807–14.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TB, et al. Characteristics of the guanine nucleotide regulatory component of adenylate cyclase in human erythrocyte membranes. Biochim Biophys Acta. 1980;629(1):143–55.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura A, et al. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc Natl Acad Sci U S A. 2010;107(31):13666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northup JK, et al. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci U S A. 1980;77(11):6516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka Y, et al. The fifth class of Galpha proteins. Proc Natl Acad Sci U S A. 2009;106(5):1484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palczewski K, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289(5480):739–45.

    Article  CAS  PubMed  Google Scholar 

  • Park JH, et al. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature. 2008;454(7201):183–7.

    Article  CAS  PubMed  Google Scholar 

  • Petrovski S, et al. Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. Am J Hum Genet. 2016;98(5):1001–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prevost GP, et al. Anticancer activity of BIM-46174, a new inhibitor of the heterotrimeric Galpha/Gbetagamma protein complex. Cancer Res. 2006;66(18):9227–34.

    Article  CAS  PubMed  Google Scholar 

  • Pupo AS, et al. Recent updates on GPCR biased agonism. Pharmacol Res. 2016;112:49–57.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG, et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature. 2011a;469(7329):175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen SG, et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature. 2011b;477(7366):549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux KH, et al. Structural analysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR and unusual mammalian immunoglobulins. Proc Natl Acad Sci U S A. 1998;95(20):11804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samama P, et al. A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem. 1993;268(7):4625–36.

    CAS  PubMed  Google Scholar 

  • Scheerer P, et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature. 2008;455(7212):497–502.

    Article  CAS  PubMed  Google Scholar 

  • Schrage R, et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun. 2015;6(6):10156.

    Article  CAS  PubMed  Google Scholar 

  • Shamseldin HE, et al. GNB5 mutation causes a novel neuropsychiatric disorder featuring attention deficit hyperactivity disorder, severely impaired language development and normal cognition. Genome Biol. 2016;17(1):195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smrcka AV. G protein betagamma subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci. 2008;65(14):2191–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sondek J, et al. Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature. 1996;379(6563):369–74.

    Article  CAS  PubMed  Google Scholar 

  • Soong BW, et al. Exome sequencing identifies GNB4 mutations as a cause of dominant intermediate Charcot-Marie-Tooth disease. Am J Hum Genet. 2013;92(3):422–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel AM. G protein defects in signal transduction. Horm Res. 2000;53(Suppl 3):17–22.

    CAS  PubMed  Google Scholar 

  • Spiegelberg BD, Hamm HE. G betagamma binds histone deacetylase 5 (HDAC5) and inhibits its transcriptional co-repression activity. J Biol Chem. 2005;280(50):41769–76.

    Article  CAS  PubMed  Google Scholar 

  • Surve CR, Lehmann D, Smrcka AV. A chemical biology approach demonstrates G protein betagamma subunits are sufficient to mediate directional neutrophil chemotaxis. J Biol Chem. 2014;289(25):17791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syrovatkina V, et al. Regulation, signaling, and physiological functions of G-proteins. J Mol Biol. 2016;428(19):3850–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo V, et al. p.Gln200Glu, a putative constitutively active mutant of rod alpha-transducin (GNAT1) in autosomal dominant congenital stationary night blindness. Hum Mutat. 2007;28(7):741–2.

    Article  PubMed  Google Scholar 

  • Szczaluba K, et al. Novel GNB1 de novo mutation in a patient with neurodevelopmental disorder and cutaneous mastocytosis: clinical report and literature review. Eur J Med Genet. 2018;61(3):157–60.

    Article  PubMed  Google Scholar 

  • Tan Q, et al. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science. 2013;341(6152):1387–90.

    Article  CAS  PubMed  Google Scholar 

  • Unger VM, et al. Arrangement of rhodopsin transmembrane alpha-helices. Nature. 1997;389(6647):203–6.

    Article  CAS  PubMed  Google Scholar 

  • Vaidehi N, Grisshammer R, Tate CG. How can mutations thermostabilize G-protein-coupled receptors? Trends Pharmacol Sci. 2016;37(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  • Vincent A, et al. Biallelic Mutations in GNB3 cause a unique form of autosomal-recessive congenital stationary night blindness. Am J Hum Genet. 2016;98(5):1011–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Qiao Y, Li Z. New Insights into Modes of GPCR Activation. Trends Pharmacol Sci. 2018;39(4):367–86.

    Article  CAS  PubMed  Google Scholar 

  • Warne T, et al. Structure of a beta1-adrenergic G-protein-coupled receptor. Nature. 2008;454(7203):486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein LS, Shenker A. G protein mutations in human disease. Clin Biochem. 1993;26(5):333–8.

    Article  CAS  PubMed  Google Scholar 

  • Xiang J, et al. Successful strategies to determine high-resolution structures of GPCRs. Trends Pharmacol Sci. 2016;37(12):1055–69.

    Article  CAS  PubMed  Google Scholar 

  • Xie K, et al. NF1 is a direct G protein effector essential for opioid signaling to Ras in the Striatum. Curr Biol. 2016;26(22):2992–3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong XF, et al. Structure-activity relationship studies of the natural product Gq/11 protein inhibitor YM-254890. Chem Med Chem. 2019;14:865–70.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, et al. Structure of the Angiotensin receptor revealed by serial femtosecond crystallography. Cell. 2015;161(4):833–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by National Key Research and Development Program of China (2018YFC1004704 and 2017YFC1001303), NSFC-CAS Joint Fund for Research Based on Large-Scale Scientific Facilities (U1632132), and NSFC General Program (31670849). Given the space limitation of the article, the authors regret the omission of many excellent publications on the subject matter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y., Xia, Y., Cao, Y. (2019). A Historical Perspective of G Protein-Coupled Receptor Structural Biology. In: Cao, Y. (eds) Advances in Membrane Proteins. Springer, Singapore. https://doi.org/10.1007/978-981-13-9077-7_2

Download citation

Publish with us

Policies and ethics