Skip to main content

Lipid Homeostasis on Cell Membrane

  • Chapter
  • First Online:
Advances in Membrane Proteins

Abstract

The plasma membrane encloses the cell, defines its boundaries, and maintains the essential differences between the cytosol and the extracellular environment. Thus, their integrity is essential for life. There are three major lipids, phospholipid, sphingolipid, and cholesterol, on cell membranes. In this Chapter, we will discuss what we have known about these lipids, their role in cell membrane formation, and their impact on cell membrane functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen OS, Koeppe RE 2nd. Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct. 2007;36:107–30.

    Article  CAS  PubMed  Google Scholar 

  • Andreyev AY, Fahy E, Guan Z, Kelly S, Li X, McDonald JG, Milne S, Myers D, Park H, Ryan A, Thompson BM, Wang E, Zhao Y, Brown HA, Merrill AH, Raetz CR, Russell DW, Subramaniam S, Dennis EA. Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res. 2010;51:2785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyama C, Liao H, Ishidate K. Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res. 2004;43:266–81.

    Article  CAS  PubMed  Google Scholar 

  • Arikketh D, Nelson R, Vance JE. Defining the importance of phosphatidylserine synthase-1 (PSS1): unexpected viability of PSS1-deficient mice. J Biol Chem. 2008;283:12888–97.

    Article  CAS  PubMed  Google Scholar 

  • Babitt J, Trigatti B, Rigotti A, Smart EJ, Anderson RG, Xu S, Krieger M. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J Biol Chem. 1997;272:13242–9.

    Article  CAS  PubMed  Google Scholar 

  • Bejaoui K, Wu C, Scheffler MD, Haan G, Ashby P, Wu L, de Jong P, Brown RH Jr. SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat Genet. 2001;27:261–2.

    Article  CAS  PubMed  Google Scholar 

  • Bergo MO, Gavino BJ, Steenbergen R, Sturbois B, Parlow AF, Sanan DA, Skarnes WC, Vance JE, Young SG. Defining the importance of phosphatidylserine synthase 2 in mice. J Biol Chem. 2002;277:47701–8.

    Article  CAS  PubMed  Google Scholar 

  • Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K. Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Annu Rev Immunol. 2006;24:353–89.

    Article  CAS  PubMed  Google Scholar 

  • Bickert A, Ginkel C, Kol M, vom Dorp K, Jastrow H, Degen J, Jacobs RL, Vance DE, Winterhager E, Jiang XC, Dormann P, Somerharju P, Holthuis JC, Willecke K. Functional characterization of enzymes catalyzing ceramide phosphoethanolamine biosynthesis in mice. J Lipid Res. 2015;56:821–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittman R, Kasireddy CR, Mattjus P, Slotte JP. Interaction of cholesterol with sphingomyelin in monolayers and vesicles. Biochemistry. 1994;33:11776–81.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov M, Umeda M, Dowhan W. Phospholipid-assisted refolding of an integral membrane protein. Minimum structural features for phosphatidylethanolamine to act as a molecular chaperone The Journal of biological chemistry. 1999;274:12339–45.

    CAS  PubMed  Google Scholar 

  • Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, Ejsing CS, Weissman JS. Orm family proteins mediate sphingolipid homeostasis. Nature. 2010;463:1048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bretscher MS. Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol. 1972;236:11–2.

    Article  CAS  PubMed  Google Scholar 

  • Bridges JP, Ikegami M, Brilli LL, Chen X, Mason RJ, Shannon JM. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J Clin Invest. 2010;120:1736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briede JJ, Wielders SJ, Heemskerk JW, Baruch D, Hemker HC, Lindhout T. von Willebrand factor stimulates thrombin-induced exposure of procoagulant phospholipids on the surface of fibrin-adherent platelets. Journal of thrombosis and haemostasis : JTH. 2003;1:559–65.

    Article  CAS  PubMed  Google Scholar 

  • Brown RE. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci. 1998;111(Pt 1):1–9.

    CAS  PubMed  Google Scholar 

  • Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000;275:17221–4.

    Article  CAS  PubMed  Google Scholar 

  • Cabukusta B, Kohlen JA, Richter CP, You C, Holthuis JC. Monitoring changes in the Oligomeric state of a candidate endoplasmic reticulum (ER) ceramide sensor by single-molecule Photobleaching. J Biol Chem. 2016;291:24735–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabukusta B, Kol M, Kneller L, Hilderink A, Bickert A, Mina JG, Korneev S, Holthuis JC. ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain. Sci Rep. 2017;7:41290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calhoun WI, Shipley GG. Fatty acid composition and thermal behavior of natural sphingomyelins. Biochim Biophys Acta. 1979;555:436–41.

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Shan D, Revett T, Li D, Wu L, Liu W, Tobin JF, Gimeno RE. Molecular identification of a novel mammalian brain isoform of acyl-CoA:lysophospholipid acyltransferase with prominent ethanolamine lysophospholipid acylating activity, LPEAT2. J Biol Chem. 2008;283:19049–57.

    Article  CAS  PubMed  Google Scholar 

  • Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta. 2006;1761:655–66.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty M, Jiang XC. Sphingomyelin and its role in cellular signaling. Adv Exp Med Biol. 2013;991:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty M, Lou C, Huan C, Kuo MS, Park TS, Cao G, Jiang XC. Myeloid cell-specific serine palmitoyltransferase subunit 2 haploinsufficiency reduces murine atherosclerosis. J Clin Invest. 2013;123:1784–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–5.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Sun Y, Welch C, Gorelik A, Leventhal AR, Tabas I, Tall AR. Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes. J Biol Chem. 2001;276:43564–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Hyatt BA, Mucenski ML, Mason RJ, Shannon JM. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Proc Natl Acad Sci U S A. 2006;103:11724–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernomordik LV, Kozlov MM. Membrane hemifusion: crossing a chasm in two leaps. Cell. 2005;123:375–82.

    Article  CAS  PubMed  Google Scholar 

  • Choy PC, Farren SB, Vance DE. Lipid requirements for the aggregation of CTP:phosphocholine cytidylyltransferase in rat liver cytosol. Can J Biochem. 1979;57:605–12.

    Article  CAS  PubMed  Google Scholar 

  • Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  • Cole LK, Vance DE. A role for Sp1 in transcriptional regulation of phosphatidylethanolamine N-methyltransferase in liver and 3T3-L1 adipocytes. J Biol Chem. 2010;285:11880–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daleke DL. Phospholipid flippases. J Biol Chem. 2007;282:821–5.

    Article  CAS  PubMed  Google Scholar 

  • de Almeida RF, Fedorov A, Prieto M. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J. 2003;85:2406–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLong CJ, Shen YJ, Thomas MJ, Cui Z. Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J Biol Chem. 1999;274:29683–8.

    Article  CAS  PubMed  Google Scholar 

  • Dergunov AD, Garaeva EA, Savushkin EV, Litvinov DY. Significance of lipid-free and lipid-associated ApoA-I in cellular Cho-lesterol efflux. Curr Protein Pept Sci. 2017;18:92–9.

    Article  CAS  PubMed  Google Scholar 

  • Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–7.

    Article  PubMed  CAS  Google Scholar 

  • Ding T, Kabir I, Li Y, Lou C, Yazdanyar A, Xu J, Dong J, Zhou H, Park T, Boutjdir M, Li Z, Jiang XC. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity. J Lipid Res. 2015;56:537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epand RM, Fuller N, Rand RP. Role of the position of unsaturation on the phase behavior and intrinsic curvature of phosphatidylethanolamines. Biophys J. 1996;71:1806–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem. 2001;276:1071–7.

    Article  CAS  PubMed  Google Scholar 

  • Faraudo J, Travesset A. Phosphatidic acid domains in membranes: effect of divalent counterions. Biophys J. 2007;92:2806–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fessler MB, Parks JS. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J Immunol. 2011;187:1529–35.

    Article  CAS  PubMed  Google Scholar 

  • Fielding PE, Russel JS, Spencer TA, Hakamata H, Nagao K, Fielding CJ. Sterol efflux to apolipoprotein A-I originates from caveolin-rich microdomains and potentiates PDGF-dependent protein kinase activity. Biochemistry. 2002;41:4929–37.

    Article  CAS  PubMed  Google Scholar 

  • Fischl AS, Homann MJ, Poole MA, Carman GM. Phosphatidylinositol synthase from Saccharomyces cerevisiae. Reconstitution, characterization, and regulation of activity. J Biol Chem. 1986;261:3178–83.

    CAS  PubMed  Google Scholar 

  • Freeman M, Ashkenas J, Rees DJ, Kingsley DM, Copeland NG, Jenkins NA, Krieger M. An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci U S A. 1990;87:8810–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman JS, Chang B, Krauth DS, Lopez I, Waseem NH, Hurd RE, Feathers KL, Branham KE, Shaw M, Thomas GE, Brooks MJ, Liu C, Bakeri HA, Campos MM, Maubaret C, Webster AR, Rodriguez IR, Thompson DA, Bhattacharya SS, Koenekoop RK, Heckenlively JR, Swaroop A. Loss of lysophosphatidylcholine acyltransferase 1 leads to photoreceptor degeneration in rd11 mice. Proc Natl Acad Sci U S A. 2010;107:15523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisdal E, Lesnik P, Olivier M, Robillard P, Chapman MJ, Huby T, Guerin M, Le Goff W. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the pro-inflammatory response. J Biol Chem. 2011;286(35):30926–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, Watkins SM, Ivanov AR, Hotamisligil GS. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473:528–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gable K, Han G, Monaghan E, Bacikova D, Natarajan M, Williams R, Dunn TM. Mutations in the yeast LCB1 and LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, dominantly inactivate serine palmitoyltransferase. J Biol Chem. 2002;277:10194–200.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Barros M, Coant N, Truman JP, Snider AJ, Hannun YA. Sphingolipids in colon cancer. Biochim Biophys Acta. 2014;1841:773–82.

    Article  CAS  PubMed  Google Scholar 

  • Gaus K, Kritharides L, Schmitz G, Boettcher A, Drobnik W, Langmann T, Quinn CM, Death A, Dean RT, Jessup W. Apolipoprotein A-1 interaction with plasma membrane lipid rafts controls cholesterol export from macrophages. FASEB J. 2004;18:574–6.

    Article  CAS  PubMed  Google Scholar 

  • Graf GA, Connell PM, van der Westhuyzen DR, Smart EJ. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J Biol Chem. 1999;274:12043–8.

    Article  CAS  PubMed  Google Scholar 

  • Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Peterson KH, Magnusson KE, Stralfors P. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 1999;13:1961–71.

    Article  CAS  PubMed  Google Scholar 

  • Hailemariam TK, Huan C, Liu J, Li Z, Roman C, Kalbfeisch M, Bui HH, Peake DA, Kuo MS, Cao G, Wadgaonkar R, Jiang XC. Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arterioscler Thromb Vasc Biol. 2008;28:1519–26.

    Article  CAS  PubMed  Google Scholar 

  • Han G, Gupta SD, Gable K, Niranjanakumari S, Moitra P, Eichler F, Brown RH Jr, Harmon JM, Dunn TM. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc Natl Acad Sci U S A. 2009;106:8186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada K, Hara T, Nishijima M. Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J Biol Chem. 2000;275:8409–15.

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M. Molecular machinery for non-vesicular trafficking of ceramide. Nature. 2003;426:803–9.

    Article  CAS  PubMed  Google Scholar 

  • Harayama T, Shindou H, Shimizu T. Biosynthesis of phosphatidylcholine by human lysophosphatidylcholine acyltransferase 1. J Lipid Res. 2009;50:1824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008;1778:660–9.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa J, Strunk BS, Weisman LS. PI5P and PI(3,5)P2: minor, but essential Phosphoinositides. Cell Struct Funct. 2017;42:49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashidate-Yoshida T, Harayama T, Hishikawa D, Morimoto R, Hamano F, Tokuoka SM, Eto M, Tamura-Nakano M, Yanobu-Takanashi R, Mukumoto Y, Kiyonari H, Okamura T, Kita Y, Shindou H, Shimizu T. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. elife. 2015;4

    Google Scholar 

  • Hattersley KJ, Hein LK, Fuller M. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease. Biochem Biophys Res Commun. 2013;442:62–7.

    Article  CAS  PubMed  Google Scholar 

  • Haynes MP, Phillips MC, Rothblat GH. Efflux of cholesterol from different cellular pools. Biochemistry. 2000;39:4508–17.

    Article  CAS  PubMed  Google Scholar 

  • Henneberry AL, McMaster CR. Cloning and expression of a human choline/ethanolaminephosphotransferase: synthesis of phosphatidylcholine and phosphatidylethanolamine. Biochem J. 1999;339(Pt 2):291–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henneberry AL, Wright MM, McMaster CR. The major sites of cellular phospholipid synthesis and molecular determinants of fatty acid and lipid head group specificity. Mol Biol Cell. 2002;13:3148–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hishikawa D, Shindou H, Kobayashi S, Nakanishi H, Taguchi R, Shimizu T. Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. Proc Natl Acad Sci U S A. 2008;105:2830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hojjati MR, Li Z, Jiang XC. Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim Biophys Acta. 2005;1737:44–51.

    Article  CAS  PubMed  Google Scholar 

  • Holub BJ, Kuksis A. Metabolism of molecular species of diacylglycerophospholipids. Adv Lipid Res. 1978;16:1–125.

    Article  CAS  PubMed  Google Scholar 

  • Hornemann T, Richard S, Rutti MF, Wei Y, von Eckardstein A. Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J Biol Chem. 2006;281:37275–81.

    Article  CAS  PubMed  Google Scholar 

  • Huang ZH, Gu D, Lange Y, Mazzone T. Expression of scavenger receptor BI facilitates sterol movement between the plasma membrane and the endoplasmic reticulum in macrophages. Biochemistry. 2003;42:3949–55.

    Article  CAS  PubMed  Google Scholar 

  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC. Identification of a family of animal sphingomyelin synthases. EMBO J. 2004;23:33–44.

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa S, Sakiyama H, Suzuki G, Hidari KI, Hirabayashi Y. Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci U S A. 1996;93:12654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408:488–92.

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi M, Varin A, Filomenko R, Lopez T, Athias A, Gambert P, Blache D, Thomas C, Gautier T, Lagrost L, Masson D. Liver x receptor regulates arachidonic acid distribution and eicosanoid release in human macrophages: a key role for lysophosphatidylcholine acyltransferase 3. Arterioscler Thromb Vasc Biol. 2013;33:1171–9.

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Shimizu T. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res. 2000;39:41–82.

    Article  CAS  PubMed  Google Scholar 

  • Jessup W, Gelissen IC, Gaus K, Kritharides L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol. 2006;17:247–57.

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Li Z, Huan C, Jiang XC. Macrophage Lysophosphatidylcholine Acyltransferase 3 deficiency-mediated inflammation is not sufficient to induce atherosclerosis in a mouse model. Frontiers in cardiovascular medicine. 2018;5:192.

    Article  PubMed  Google Scholar 

  • Johnson BB, Heuck AP. Perfringolysin O structure and mechanism of pore formation as a paradigm for cholesterol-dependent cytolysins. Subcell Biochem. 2014;80:63–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabir I, Li Z, Bui HH, Kuo MS, Gao G, Jiang XC. Small intestine but not liver Lysophosphatidylcholine Acyltransferase 3 (Lpcat3) deficiency has a dominant effect on plasma lipid metabolism. J Biol Chem. 2016;291:7651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan CC, Ruan ZS, Bittman R. Interaction of cholesterol with sphingomyelin in bilayer membranes: evidence that the hydroxy group of sphingomyelin does not modulate the rate of cholesterol exchange between vesicles. Biochemistry. 1991;30:7759–66.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy EP, Weiss SB. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956;222:193–214.

    CAS  PubMed  Google Scholar 

  • Knight MJ, Leettola C, Gingery M, Li H, Bowie JU. A human sterile alpha motif domain polymerizome. Protein science : a publication of the Protein Society. 2011;20:1697–706.

    Article  CAS  Google Scholar 

  • Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature. 1990;343:531–5.

    Article  CAS  PubMed  Google Scholar 

  • Kolesnick RN. Sphingomyelin and derivatives as cellular signals. Prog Lipid Res. 1991;30:1–38.

    Article  CAS  PubMed  Google Scholar 

  • Kong P, Ufermann CM, Zimmermann DLM, Yin Q, Suo X, Helms JB, Brouwers JF, Gupta N. Two phylogenetically and compartmentally distinct CDP-diacylglycerol synthases cooperate for lipid biogenesis in toxoplasma gondii. J Biol Chem. 2017;292:7145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooijman EE, Chupin V, de Kruijff B, Burger KN. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic. 2003;4:162–74.

    Article  CAS  PubMed  Google Scholar 

  • Landry YD, Denis M, Nandi S, Bell S, Vaughan AM, Zha X. ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J Biol Chem. 2006;281:36091–101.

    Article  CAS  PubMed  Google Scholar 

  • Lands WE. Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J Biol Chem. 1958;231:883–8.

    CAS  PubMed  Google Scholar 

  • Lands WE. Stories about acyl chains. Biochim Biophys Acta. 2000;1483:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Lange Y, Steck TL. Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol. Prog Lipid Res. 2008;47:319–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange Y, Swaisgood MH, Ramos BV, Steck TL. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem. 1989;264:3786–93.

    CAS  PubMed  Google Scholar 

  • Lange Y, Strebel F, Steck TL. Role of the plasma membrane in cholesterol esterification in rat hepatoma cells. J Biol Chem. 1993;268:13838–43.

    CAS  PubMed  Google Scholar 

  • Lange Y, Ye J, Rigney M, Steck TL. Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J Lipid Res. 1999;40:2264–70.

    CAS  PubMed  Google Scholar 

  • Lange Y, Ye J, Steck TL. Essentially all excess fibroblast cholesterol moves from plasma membranes to intracellular compartments. PLoS One. 2014;9:e98482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee HK, Dunzendorfer S, Soldau K, Tobias PS. Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity. 2006;24:153–63.

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Inoue T, Imae R, Kono N, Shirae S, Matsuda S, Gengyo-Ando K, Mitani S, Arai H. Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol. Mol Biol Cell. 2008;19:1174–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity. 2003;18:655–64.

    Article  CAS  PubMed  Google Scholar 

  • Leventhal AR, Chen W, Tall AR, Tabas I. Acid sphingomyelinase-deficient macrophages have defective cholesterol trafficking and efflux. J Biol Chem. 2001;276:44976–83.

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Momsen MM, Smaby JM, Brockman HL, Brown RE. Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins. Biochemistry. 2001;40:5954–63.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Hailemariam TK, Zhou H, Li Y, Duckworth DC, Peake DA, Zhang Y, Kuo MS, Cao G, Jiang XC. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochim Biophys Acta. 2007;1771:1186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang H, Liu J, Liang CP, Li Y, Teitelman G, Beyer T, Bui HH, Peake DA, Zhang Y, Sanders PE, Kuo MS, Park TS, Cao G, Jiang XC. Reducing plasma membrane sphingomyelin increases insulin sensitivity. Mol Cell Biol. 2011;31:4205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Fan Y, Liu J, Li Y, Huan C, Bui HH, Kuo MS, Park TS, Cao G, Jiang XC. Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2012;32:1577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Jiang H, Ding T, Lou C, Bui HH, Kuo MS, Jiang XC. Deficiency in lysophosphatidylcholine acyltransferase 3 reduces plasma levels of lipids by reducing lipid absorption in mice. Gastroenterology. 2015;149:1519–29.

    Article  CAS  PubMed  Google Scholar 

  • Liscum L, Munn NJ. Intracellular cholesterol transport. Biochim Biophys Acta. 1999;1438:19–37.

    Article  CAS  PubMed  Google Scholar 

  • Litvinov DY, Savushkin EV, Garaeva EA, Dergunov AD. Cholesterol efflux and reverse cholesterol transport: experimental approaches. Curr Med Chem. 2016;23:3883–908.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang H, Li Z, Hailemariam TK, Chakraborty M, Jiang K, Qiu D, Bui HH, Peake DA, Kuo MS, Wadgaonkar R, Cao G, Jiang XC. Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice. Arterioscler Thromb Vasc Biol. 2009a;29:850–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Huan C, Chakraborty M, Zhang H, Lu D, Kuo MS, Cao G, Jiang XC. Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ Res. 2009b;105:295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, Mehendale H, Cabot MC, Li YT, Jazwinski SM. Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer. 2010;9:145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Yin Y, Wu J, Liu Z. Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis. Nat Commun. 2014;5:4244.

    Article  CAS  PubMed  Google Scholar 

  • London E, Brown DA. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta. 2000;1508:182–95.

    Article  CAS  PubMed  Google Scholar 

  • Luberto C, Yoo DS, Suidan HS, Bartoli GM, Hannun YA. Differential effects of sphingomyelin hydrolysis and resynthesis on the activation of NF-kappa B in normal and SV40-transformed human fibroblasts. J Biol Chem. 2000;275:14760–6.

    Article  CAS  PubMed  Google Scholar 

  • Lykidis A, Baburina I, Jackowski S. Distribution of CTP:phosphocholine cytidylyltransferase (CCT) isoforms. Identification of a new CCTbeta splice variant The Journal of biological chemistry. 1999;274:26992–7001.

    CAS  PubMed  Google Scholar 

  • MacDonald JI, Sprecher H. Phospholipid fatty acid remodeling in mammalian cells. Biochim Biophys Acta. 1991;1084:105–21.

    Article  CAS  PubMed  Google Scholar 

  • Marchesini N, Jones JA, Hannun YA. Confluence induced threonine41/serine45 phospho-beta-catenin dephosphorylation via ceramide-mediated activation of PP1cgamma. Biochim Biophys Acta. 2007;1771:1418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masserini M, Ravasi D. Role of sphingolipids in the biogenesis of membrane domains. Biochim Biophys Acta. 2001;1532:149–61.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F, Hashimoto Y, Higashi K, Kobayashi M, Hirofuji T, Hirata M, Maeda K. Sphingosine-1-phosphate promotes the nuclear translocation of beta-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone. 2013;55:315–24.

    Article  CAS  PubMed  Google Scholar 

  • Mendez AJ, Lin G, Wade DP, Lawn RM, Oram JF. Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J Biol Chem. 2001;276:3158–66.

    Article  CAS  PubMed  Google Scholar 

  • Merrill AH Jr. Characterization of serine palmitoyltransferase activity in Chinese hamster overy cells. Biochim Biophys Acta. 1983a;754:284–91.

    Article  CAS  PubMed  Google Scholar 

  • Merrill AH Jr. Characterization of serine palmitoyltransferase activity in Chinese hamster ovary cells. Biochim Biophys Acta. 1983b;754:284–91.

    Article  CAS  PubMed  Google Scholar 

  • Merrill AH Jr, Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta. 1990;1044:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Miggin SM, O’Neill LA. New insights into the regulation of TLR signaling. J Leukoc Biol. 2006;80:220–6.

    Article  CAS  PubMed  Google Scholar 

  • Miyaji M, Jin ZX, Yamaoka S, Amakawa R, Fukuhara S, Sato SB, Kobayashi T, Domae N, Mimori T, Bloom ET, Okazaki T, Umehara H. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med. 2005;202:249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake K. Roles for accessory molecules in microbial recognition by toll-like receptors. J Endotoxin Res. 2006;12:195–204.

    CAS  PubMed  Google Scholar 

  • Moessinger C, Kuerschner L, Spandl J, Shevchenko A, Thiele C. Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem. 2011;286:21330–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhamedova N, Escher G, D’Souza W, Tchoua U, Grant A, Krozowski Z, Bukrinsky M, Sviridov D. Enhancing apolipoprotein A-I-dependent cholesterol efflux elevates cholesterol export from macrophages in vivo. J Lipid Res. 2008;49:2312–22.

    Article  CAS  PubMed  Google Scholar 

  • Mukhamedova N, Hoang A, Cui HL, Carmichael I, Fu Y, Bukrinsky M, Sviridov D. Small GTPase ARF6 regulates Endocytic pathway leading to degradation of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2016;36:2292–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller G, Jung C, Wied S, Welte S, Jordan H, Frick W. Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes. Mol Cell Biol. 2001;21:4553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagao K, Takahashi K, Hanada K, Kioka N, Matsuo M, Ueda K. Enhanced apoA-I-dependent cholesterol efflux by ABCA1 from sphingomyelin-deficient Chinese hamster ovary cells. J Biol Chem. 2007;282:14868–74.

    Article  CAS  PubMed  Google Scholar 

  • Nakahira K, Kim HP, Geng XH, Nakao A, Wang X, Murase N, Drain PF, Sasidhar M, Nabel EG, Takahashi T, Lukacs NW, Ryter SW, Morita K, Choi AM. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med. 2006;203:2377–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R, Suwabe A, Taguchi R, Shimizu T. Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production The Journal of biological chemistry. 2006;281:20140–7.

    CAS  PubMed  Google Scholar 

  • Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41:66–97.

    Article  CAS  PubMed  Google Scholar 

  • Oslakovic C, Krisinger MJ, Andersson A, Jauhiainen M, Ehnholm C, Dahlback B. Anionic phospholipids lose their procoagulant properties when incorporated into high density lipoproteins. J Biol Chem. 2009;284:5896–904.

    Article  CAS  PubMed  Google Scholar 

  • Ouimet M, Hennessy EJ, van Solingen C, Koelwyn GJ, Hussein MA, Ramkhelawon B, Rayner KJ, Temel RE, Perisic L, Hedin U, Maegdefessel L, Garabedian MJ, Holdt LM, Teupser D, Moore KJ. miRNA targeting of Oxysterol-binding protein-like 6 regulates cholesterol trafficking and efflux. Arterioscler Thromb Vasc Biol. 2016;36:942–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel D, Witt SN. Ethanolamine and Phosphatidylethanolamine: Partners in Health and Disease. Oxidative Med Cell Longev. 2017;2017:4829180.

    Article  CAS  Google Scholar 

  • Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry. 2008;47:6991–7000.

    Article  CAS  PubMed  Google Scholar 

  • Pepperl J, Reim G, Luthi U, Kaech A, Hausmann G, Basler K. Sphingolipid depletion impairs endocytic traffic and inhibits wingless signaling. Mech Dev. 2013;130:493–505.

    Article  CAS  PubMed  Google Scholar 

  • Percy AK, Moore JF, Carson MA, Waechter CJ. Characterization of brain phosphatidylserine decarboxylase: localization in the mitochondrial inner membrane. Arch Biochem Biophys. 1983;223:484–94.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Moreno M, Fuchs E. Catenins: keeping cells from getting their signals crossed. Dev Cell. 2006;11:601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peshavariya H, Dusting GJ, Di Bartolo B, Rye KA, Barter PJ, Jiang F. Reconstituted high-density lipoprotein suppresses leukocyte NADPH oxidase activation by disrupting lipid rafts. Free Radic Res. 2009;43:772–82.

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ. Lipid rafts: bringing order to chaos. J Lipid Res. 2003;44:655–67.

    Article  CAS  PubMed  Google Scholar 

  • Poccia D, Larijani B. Phosphatidylinositol metabolism and membrane fusion. Biochem J. 2009;418:233–46.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 2008;8:512–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasband MN. The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci. 2010;11:552–62.

    Article  CAS  PubMed  Google Scholar 

  • Ridgway ND. Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim Biophys Acta. 2000;1484:129–41.

    Article  CAS  PubMed  Google Scholar 

  • Rong X, Albert CJ, Hong C, Duerr MA, Chamberlain BT, Tarling EJ, Ito A, Gao J, Wang B, Edwards PA, Jung ME, Ford DA, Tontonoz P. LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab. 2013;18:685–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong X, Wang B, Dunham MM, Hedde PN, Wong JS, Gratton E, Young SG, Ford DA, Tontonoz P. Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. elife. 2015;4

    Google Scholar 

  • Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801–9.

    Article  CAS  PubMed  Google Scholar 

  • Rotthier A, Auer-Grumbach M, Janssens K, Baets J, Penno A, Almeida-Souza L, Van Hoof K, Jacobs A, De Vriendt E, Schlotter-Weigel B, Loscher W, Vondracek P, Seeman P, De Jonghe P, Van Dijck P, Jordanova A, Hornemann T, Timmerman V. Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am J Hum Genet. 2010;87:513–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankaram MB, Thompson TE. Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2H nuclear magnetic resonance study. Biochemistry. 1990;29:10676–84.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A. Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res. 2009;48:307–43.

    Article  CAS  PubMed  Google Scholar 

  • Schink KO, Tan KW, Stenmark H. Phosphoinositides in control of membrane dynamics. Annu Rev Cell Dev Biol. 2016;32:143–71.

    Article  CAS  PubMed  Google Scholar 

  • Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. Prog Lipid Res. 2000;39:257–88.

    Article  CAS  PubMed  Google Scholar 

  • Schmelz EM, Roberts PC, Kustin EM, Lemonnier LA, Sullards MC, Dillehay DL, Merrill AH Jr. Modulation of intracellular beta-catenin localization and intestinal tumorigenesis in vivo and in vitro by sphingolipids. Cancer Res. 2001;61:6723–9.

    CAS  PubMed  Google Scholar 

  • Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, Witke W, Huttner WB, Soling HD. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature. 1999;401:133–41.

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004;286:C1213–28.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder R, London E, Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A. 1994;91:12130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell. 1992;71:765–76.

    Article  CAS  PubMed  Google Scholar 

  • Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017;18:361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaul PW, Anderson RG. Role of plasmalemmal caveolae in signal transduction. Am J Phys. 1998;275:L843–51.

    CAS  Google Scholar 

  • Shindou H, Shimizu T. Acyl-CoA:lysophospholipid acyltransferases. J Biol Chem. 2009;284:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Shindou H, Hishikawa D, Nakanishi H, Harayama T, Ishii S, Taguchi R, Shimizu T. A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells. Cloning and characterization of acetyl-CoA:LYSO-PAF acetyltransferase The Journal of biological chemistry. 2007;282:6532–9.

    CAS  PubMed  Google Scholar 

  • Shindou H, Hishikawa D, Harayama T, Eto M, Shimizu T. Generation of membrane diversity by lysophospholipid acyltransferases. J Biochem. 2013;154:21–8.

    Article  CAS  PubMed  Google Scholar 

  • Simon KW, Roberts PC, Vespremi MJ, Manchen S, Schmelz EM. Regulation of beta-catenin and connexin-43 expression: targets for sphingolipids in colon cancer prevention. Mol Nutr Food Res. 2009;53:332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–72.

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E. How cells handle cholesterol. Science. 2000;290:1721–6.

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–9.

    Article  CAS  PubMed  Google Scholar 

  • Singh AB, Liu J. Identification of hepatic Lysophosphatidylcholine Acyltransferase 3 as a novel target gene regulated by peroxisome proliferator-activated receptor delta. J Biol Chem. 2017;292:884–97.

    Article  CAS  PubMed  Google Scholar 

  • Siow DL, Wattenberg BW. Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis. J Biol Chem. 2012;287:40198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotte JP. Cholesterol-sphingomyelin interactions in cells--effects on lipid metabolism. Subcell Biochem. 1997;28:277–93.

    Article  CAS  PubMed  Google Scholar 

  • Slotte JP. Sphingomyelin-cholesterol interactions in biological and model membranes. Chem Phys Lipids. 1999;102:13–27.

    Article  CAS  PubMed  Google Scholar 

  • Sokolov A, Radhakrishnan A. Accessibility of cholesterol in endoplasmic reticulum membranes and activation of SREBP-2 switch abruptly at a common cholesterol threshold. J Biol Chem. 2010;285:29480–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnino S, Prinetti A. Lipids and membrane lateral organization. Front Physiol. 2010;1:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnino S, Prinetti A, Nakayama H, Yangida M, Ogawa H, Iwabuchi K. Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconj J. 2009;26:615–21.

    Article  CAS  PubMed  Google Scholar 

  • Stevens TP, Sinkin RA. Surfactant replacement therapy. Chest. 2007;131:1577–82.

    Article  PubMed  Google Scholar 

  • Sundler R, Akesson B. Biosynthesis of phosphatidylethanolamines and phosphatidylcholines from ethanolamine and choline in rat liver. Biochem J. 1975;146:309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundler R, Akesson B, Nilsson A. Quantitative role of base exchange in phosphatidylethanolamine synthesis in isolated rat hepatocytes. FEBS Lett. 1974;43:303–7.

    Article  CAS  PubMed  Google Scholar 

  • Szabo G, Dolganiuc A, Dai Q, Pruett SB. TLR4, ethanol, and lipid rafts: a new mechanism of ethanol action with implications for other receptor-mediated effects. J Immunol. 2007;178:1243–9.

    Article  CAS  PubMed  Google Scholar 

  • Szule JA, Coorssen JR. Revisiting the role of SNAREs in exocytosis and membrane fusion. Biochim Biophys Acta. 2003;1641:121–35.

    Article  CAS  PubMed  Google Scholar 

  • Tafesse FG, Ternes P, Holthuis JC. The multigenic sphingomyelin synthase family. J Biol Chem. 2006;281:29421–5.

    Article  CAS  PubMed  Google Scholar 

  • Tafesse FG, Vacaru AM, Bosma EF, Hermansson M, Jain A, Hilderink A, Somerharju P, Holthuis JC. Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis. J Cell Sci. 2014;127:445–54.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Tall AR. An overview of reverse cholesterol transport. Eur Heart J. 1998;19(Suppl A):A31–5.

    CAS  PubMed  Google Scholar 

  • Tamm LK, Crane J, Kiessling V. Membrane fusion: a structural perspective on the interplay of lipids and proteins. Curr Opin Struct Biol. 2003;13:453–66.

    Article  CAS  PubMed  Google Scholar 

  • Ternes P, Brouwers JF, van den Dikkenberg J, Holthuis JC. Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolamine synthase. J Lipid Res. 2009;50:2270–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas C, Jalil A, Magnani C, Ishibashi M, Quere R, Bourgeois T, Bergas V, Menegaut L, Patoli D, Le Guern N, Labbe J, Gautier T, de Barros JPP, Lagrost L, Masson D. LPCAT3 deficiency in hematopoietic cells alters cholesterol and phospholipid homeostasis and promotes atherosclerosis. Atherosclerosis. 2018;275:409–18.

    Article  CAS  PubMed  Google Scholar 

  • Tintle NL, Pottala JV, Lacey S, Ramachandran V, Westra J, Rogers A, Clark J, Olthoff B, Larson M, Harris W, Shearer GC. A genome-wide association study of saturated, mono- and polyunsaturated red blood cell fatty acids in the Framingham heart offspring study. Prostaglandins Leukot Essent Fatty Acids. 2015;94:65–72.

    Article  CAS  PubMed  Google Scholar 

  • Toti F, Satta N, Fressinaud E, Meyer D, Freyssinet JM. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood. 1996;87:1409–15.

    CAS  PubMed  Google Scholar 

  • Traiffort E, O’Regan S, Ruat M. The choline transporter-like family SLC44: properties and roles in human diseases. Mol Asp Med. 2013;34:646–54.

    Article  CAS  Google Scholar 

  • Triantafilou M, Brandenburg K, Kusumoto S, Fukase K, Mackie A, Seydel U, Triantafilou K. Combinational clustering of receptors following stimulation by bacterial products determines lipopolysaccharide responses. Biochem J. 2004a;381:527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triantafilou M, Morath S, Mackie A, Hartung T, Triantafilou K. Lateral diffusion of toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J Cell Sci. 2004b;117:4007–14.

    Article  CAS  PubMed  Google Scholar 

  • Tsujita K, Itoh T. Phosphoinositides in the regulation of actin cortex and cell migration. Biochim Biophys Acta. 2015;1851:824–31.

    Article  CAS  PubMed  Google Scholar 

  • Vacaru AM, Tafesse FG, Ternes P, Kondylis V, Hermansson M, Brouwers JF, Somerharju P, Rabouille C, Holthuis JC. Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. J Cell Biol. 2009;185:1013–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Brink-van der Laan E, Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta. 2004;1666:275–88.

    Google Scholar 

  • Van der Luit AH, Budde M, Zerp S, Caan W, Klarenbeek JB, Verheij M, Van Blitterswijk WJ. Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesterol-deficiency in lipid rafts. Biochem J. 2007;401:541–9.

    Article  PubMed  CAS  Google Scholar 

  • van Meer G. Dynamic transbilayer lipid asymmetry. Cold Spring Harb Perspect Biol. 2011;3(5):pii: a004671.

    Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vance JE. Molecular and cell biology of phosphatidylserine and phosphatidylethanolamine metabolism. Prog Nucleic Acid Res Mol Biol. 2003;75:69–111.

    Article  CAS  PubMed  Google Scholar 

  • Vance DE. Phospholipid methylation in mammals: from biochemistry to physiological function. Biochim Biophys Acta. 2014;1838:1477–87.

    Article  CAS  PubMed  Google Scholar 

  • Vance JE. Phospholipid synthesis and transport in mammalian cells. Traffic. 2015;16:1–18.

    Article  CAS  PubMed  Google Scholar 

  • Vance DE, Ridgway ND. The methylation of phosphatidylethanolamine. Prog Lipid Res. 1988;27:61–79.

    Article  CAS  PubMed  Google Scholar 

  • Veiga MP, Arrondo JL, Goni FM, Alonso A, Marsh D. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol Biochemistry. 2001;40:2614–22.

    CAS  PubMed  Google Scholar 

  • Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R. Signaling functions of phosphatidic acid. Prog Lipid Res. 2006a;45:250–78.

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Town T, Gokarn V, Flavell RA, Chandawarkar RY. HSP70 enhances macrophage phagocytosis by interaction with lipid raft-associated TLR-7 and upregulating p38 MAPK and PI3K pathways. J Surg Res. 2006b;136:58–69.

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Ranalletta M, Matsuura F, Peng F, Tall AR. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Arterioscler Thromb Vasc Biol. 2006c;26:1310–6.

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Rong X, Duerr MA, Hermanson DJ, Hedde PN, Wong JS, Vallim TQ, Cravatt BF, Gratton E, Ford DA, Tontonoz P. Intestinal phospholipid remodeling is required for dietary-lipid uptake and survival on a high-fat diet. Cell Metab. 2016;23:492–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnock DE, Roberts C, Lutz MS, Blackburn WA, Young WW Jr, Baenziger JU. Determination of plasma membrane lipid mass and composition in cultured Chinese hamster ovary cells using high gradient magnetic affinity chromatography. J Biol Chem. 1993;268:10145–53.

    CAS  PubMed  Google Scholar 

  • Wattenberg BW, Silbert DF. Sterol partitioning among intracellular membranes. Testing a model for cellular sterol distribution The Journal of biological chemistry. 1983;258:2284–9.

    CAS  Google Scholar 

  • Weiss B, Stoffel W. Human and murine serine-palmitoyl-CoA transferase--cloning, expression and characterization of the key enzyme in sphingolipid synthesis. European journal of biochemistry / FEBS. 1997;249:239–47.

    Article  CAS  Google Scholar 

  • Whelihan MF, Zachary V, Orfeo T, Mann KG. Prothrombin activation in blood coagulation: the erythrocyte contribution to thrombin generation. Blood. 2012;120:3837–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf C, Koumanov K, Tenchov B, Quinn PJ. Cholesterol favors phase separation of sphingomyelin. Biophys Chem. 2001;89:163–72.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Mlodzik M. A quest for the mechanism regulating global planar cell polarity of tissues. Trends Cell Biol. 2009;19:295–305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wustner D, Solanko K. How cholesterol interacts with proteins and lipids during its intracellular transport. Biochim Biophys Acta. 2015;1848:1908–26.

    Article  CAS  PubMed  Google Scholar 

  • Yamaji-Hasegawa A, Makino A, Baba T, Senoh Y, Kimura-Suda H, Sato SB, Terada N, Ohno S, Kiyokawa E, Umeda M, Kobayashi T. Oligomerization and pore formation of a sphingomyelin-specific toxin, lysenin. J Biol Chem. 2003;278:22762–70.

    Article  CAS  PubMed  Google Scholar 

  • Yamaoka S, Miyaji M, Kitano T, Umehara H, Okazaki T. Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J Biol Chem. 2004;279:18688–93.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Sugiura T, Waku K. Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem. 1997;122:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Yancey PG, Rodrigueza WV, Kilsdonk EP, Stoudt GW, Johnson WJ, Phillips MC, Rothblat GH. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration Of kinetic pools and mechanism of efflux The Journal of biological chemistry. 1996;271:16026–34.

    CAS  PubMed  Google Scholar 

  • Yasuda S, Nishijima M, Hanada K. Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J Biol Chem. 2003;278:4176–83.

    Article  CAS  PubMed  Google Scholar 

  • Yeang C, Varshney S, Wang R, Zhang Y, Ye D, Jiang XC. The domain responsible for sphingomyelin synthase (SMS) activity. Biochim Biophys Acta. 2008;1781:610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yvan-Charvet L, Welch C, Pagler TA, Ranalletta M, Lamkanfi M, Han S, Ishibashi M, Li R, Wang N, Tall AR. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation. 2008;118:1837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chen YQ, Bonacci TM, Bredt DS, Li S, Bensch WR, Moller DE, Kowala M, Konrad RJ, Cao G. Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. J Biol Chem. 2008;283:8258–65.

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Owen JS, Wilson MD, Li H, Griffiths GL, Thomas MJ, Hiltbold EM, Fessler MB, Parks JS. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res. 2010;51:3196–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwaal RF, Comfurius P, Bevers EM. Lipid-protein interactions in blood coagulation. Biochim Biophys Acta. 1998;1376:433–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Some part of this chapter was modified and up-grated from the paper published by author’s group (Chakraborty, M., and X. C. Jiang. 2013. Sphingomyelin and its role in cellular signaling. Advances in experimental medicine and biology 991: 1-14). The related contents are re-used with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Cheng Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, XC. (2019). Lipid Homeostasis on Cell Membrane. In: Cao, Y. (eds) Advances in Membrane Proteins. Springer, Singapore. https://doi.org/10.1007/978-981-13-9077-7_1

Download citation

Publish with us

Policies and ethics