Skip to main content

Transition Metal Dichalcogenides for Energy Storage Applications

  • Chapter
  • First Online:
Two Dimensional Transition Metal Dichalcogenides

Abstract

Energy storage techniques based on supercapacitors and secondary batteries play important roles in the current energy fields. They all face some technical challenges which need to be addressed urgently to satisfy the increasing demand for modern clean energy technologies. In these electrochemical energy storage devices, two-dimensional monolayered transition metal dichalcogenides (2D TMDs) may play particular roles in improving many aspects of performances owing to their thin structure, large surface area, high surface tenability, and both “Faradaic” and “non-Faradaic” electrochemical behaviors. This chapter gives an overview of energy storage techniques based on conventional and newly developed supercapacitors and secondary batteries and discusses on how to engineer 2D TMDs to enable them to find promising applications in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braff WA, Mueller JM, Trancik JE (2016) Value of storage technologies for wind and solar energy. Nat. Clim. Change 6:964–970

    Article  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  4. Zhao C, Zheng W (2015) A review for aqueous electrochemical supercapacitors. Front Energy Res 3:23

    Google Scholar 

  5. Faraji S, Ani FN (2015) The development supercapacitor from activated carbon by electroless plating-a review. Renew Sust Energ Rev 42:823–834

    Article  CAS  Google Scholar 

  6. Choi H, Yoon H (2015) Nanostructured electrode materials for electrochemical capacitor applications. Nanomaterials 5:906–936

    Article  CAS  Google Scholar 

  7. Béguin F, Presser V, Balducci A et al (2014) Carbon and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251

    Article  Google Scholar 

  8. Fernández JA, Morishita T, Toyoda M et al (2008) Performance of mesoporous carbons derived from poly (vinyl achohol) in electrochemical capacitors. J Power Sources 175:675–679

    Article  Google Scholar 

  9. Izadi-Najafabadi A, Yasuda S, Kobashi K et al (2010) Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater 22:E235–E241

    Article  CAS  Google Scholar 

  10. Futaba DN, Hata K, Yamada T et al (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5:987–994

    Article  CAS  Google Scholar 

  11. Chmiola J, Yushin G, Gogotsi Y et al (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  Google Scholar 

  12. Bi R, Wu X, Cao F et al (2010) Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J Phys Chem C 114:2448–2451

    Article  CAS  Google Scholar 

  13. Brezesinski T, Wang J, Tolbert SH et al (2010) Ordered mesoporous ɑ-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    Article  CAS  Google Scholar 

  14. Lang X, Hirata A, Fujita T et al (2011) Nanoporous metal/oxide hybrid electrode for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  CAS  Google Scholar 

  15. Zhu Y, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  16. Zhang L, Wu HB, Lou XW (2012) Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors. Chem Commun 48:6912–6914

    Article  CAS  Google Scholar 

  17. Zhang W, Chuan X, Ma C et al (2017) Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv Mater 29:1701677

    Article  Google Scholar 

  18. Muller GA, Cook JB, Kim HS et al (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. ACS Nano 15:1911–1917

    CAS  Google Scholar 

  19. Soon JM, Loh KP (2007) Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem Solid-State Lett 10:A250–A254

    Article  CAS  Google Scholar 

  20. Cao X, Shi Y, Shi W et at (2013) Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in Lithium-ion batteries. Small 9:433–3438

    Article  CAS  Google Scholar 

  21. Gao W, Singh N, Song L et al (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6:496–500

    Article  CAS  Google Scholar 

  22. Pech D, Brunet M, Durou H et al (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654

    Article  CAS  Google Scholar 

  23. Cao L, Yang S, Gao W et al (2013) Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9:2905–2910

    Article  CAS  Google Scholar 

  24. Choudhary N, Patel M, Ho YH et al (2015) Directly deposited MoS2 thin film electrodes for high performance supercapacitors. J Mater Chem A 3:24049–24054

    Article  CAS  Google Scholar 

  25. Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Mater 10:313–318

    CAS  Google Scholar 

  26. Lin L, Miao N, Wen Y et al (2016) Sulphur-depleted monolayered molybdenum disulfide nanocrystals for superelectrochemical hydrogen evolution reaction. ACS Nano 10:8929–8937

    Article  CAS  Google Scholar 

  27. Lin L, Miao N, Huang J et al (2017) A photocatalyst of Sulphur depleted monolayered molybdenum sulfide nanocrystals for dye degradation and hydrogen evolution reaction. Nano Energy 38:544–552

    Article  CAS  Google Scholar 

  28. Tu C, Lin L, Xiao B et al (2016) Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheet. J Power Sources 320:78–85

    Article  CAS  Google Scholar 

  29. Yu Y, Huang S, Li Y et al (2014) Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett 14:553–558

    Article  CAS  Google Scholar 

  30. Shen J, Wu J, Pei L et al (2016) CoNi2S4-graphene-2D-MoSe2 as an advanced electrode material for supercapacitors. Adv Energ Mater 6:1600341

    Article  Google Scholar 

  31. Stoller MD, Ruoff RS (2010) Best practice methods for determining and electrode material’s performance for ultracapacitors. Energy Environ Sci 3:1294–1301

    Article  CAS  Google Scholar 

  32. Feng J, Sun X, Wu CZ et al (2011) Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc 133:17832–17838

    Article  CAS  Google Scholar 

  33. Chakravarty D, Late DJ (2015) Microwave and hydrothermal syntheses of WSe2 micro/nanorods and their application in supercapacitors. RSC Adv 5:21700–21709

    Article  CAS  Google Scholar 

  34. Liu J, Cao H, Jiang B et al (2016) Newborn 2D materials for flexible energy conversion and storage. Sci. China Mater 59:459–474

    CAS  Google Scholar 

  35. Gao L (2017) Flexible device applications of 2D semiconductors. Small 13:1603994

    Article  Google Scholar 

  36. Liu Y, Peng X (2017) Recent advances of supercapacitors based on two-dimensional materials. Appl. Mater. Today 8:104–115

    Article  Google Scholar 

  37. Han Y, Ge Y, Chao Y et al (2018) Recent progress in 2D materials for flexible supercapacitors. J. Energ. Chem. 27:57–72

    Article  Google Scholar 

  38. Liu S, Zeng Y, Zhang M et al (2017) Bindier-free WS2 nanosheets with enhanved crystallinity as a stable negative electrode for flexible asymmetric supercapacitors. J Mater Chem A

    Google Scholar 

  39. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425, 5:21460–21466

    Article  CAS  Google Scholar 

  40. Novoselov KS, Mishchenko A, Carvalho A et al (2016) 2D materials and van der Waals heterostructures. 353:461

    Article  CAS  Google Scholar 

  41. Pomerantseva E, Gogotsi Y (2017) Two-dimensional heterostructures for energy storage. Nat Energy 2:17089

    Article  CAS  Google Scholar 

  42. Goodenough JB, Park KS (2012) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  43. Battery University: BU-107: Comparison table of secondary batteries. http://batteryuniversity.com/learn/article/secondary_batteries

  44. Zaghib K, Dontigny M, Guerifi A et al (2011) Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sources 196:3949–3954

    Article  CAS  Google Scholar 

  45. Xiao J, Choi D, Cosimbescu L et al (2010) Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater 22:4522–4524

    Article  CAS  Google Scholar 

  46. Xu B, Wang L, Chen HJ et al (2014) Adsorption and diffusion of lithium on 1T-MoS2 monolayer. Compunt Mater Sci 93:86–90

    Article  CAS  Google Scholar 

  47. Zhou JW, Qin J, Zhang X et al (2015) 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheets for lithium-ion battery anode. ACS Nano 9:3837–3848

    Article  CAS  Google Scholar 

  48. Jiang L, Lin B, Li X et al (2016) Monolayer MoS2-graphene hybrid aerogels with controllable porosity for lithium-ion batteries with high reversible capacity. ACS Appl Mater Interfaces 8:2680–2687

    Article  CAS  Google Scholar 

  49. Jing Y, Zhou Z, Cabrera CR et al (2013) Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries. J Phys Chem C 117:25409–25413

    Article  CAS  Google Scholar 

  50. Mikhaleva NS, Visotin MA, Kuzubov AA et al (2017) VS2/graphene heterostructures as promising anode material for Li-ion batteries. J Phys Chem C 121:24179–24184

    Article  CAS  Google Scholar 

  51. Wang D, Liu Y, Meng X et al (2017) Two-dimensional VS2 monolayers as potential anode materials for lituium-ion batteries and beyond: first-principles calculations. J Mater Chem A 5:21370–21377

    Article  CAS  Google Scholar 

  52. Cai L, Zhang Q, Mwizerwa JP et al (2018) Highly crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances. ACS Appl Mater Interfaces 10:10053–10063

    Article  CAS  Google Scholar 

  53. Ren J, Wang Z, Yang F et al (2018) Freestanding 3D single-wall carbon nanotubes/WS2 nanosheets foams as ultra-long-life anodes for rechargeable lithium ion batteries. Electrochim Acta 267:133–140

    Article  CAS  Google Scholar 

  54. Lei T, Chen W, Huang J et al (2017) Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries. Adv Energy Mater 7:1601843

    Article  Google Scholar 

  55. Chaturvedi A, Hu P, Aravindan V et al (2017) Unveiling two-dimensional TiS2 as an insertion host for the construction of high energy Li-ion capacitors. J Mater Chem A 5:9177–9181

    Article  CAS  Google Scholar 

  56. Yang E, Ji H, Jung Y et al (2015) Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J Phys Chem C 119:26374–26380

    Article  CAS  Google Scholar 

  57. Putungan DB, Lin S, Kuo J (2016) Metallic VS2 monolayer polytypes as potential sodium-ion battery anode via ab initio random structure searching. ACS Appl Mater Interfaces 8:18754–18762

    Article  CAS  Google Scholar 

  58. Sun R, Wei Q, Sheng J et al (2017) Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 35:396–404

    Article  CAS  Google Scholar 

  59. Yu D, Pang Q, Gao Y et al (2018) Hierarchical flower-like VS2 nanosheets-a high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater 11:1–7

    Article  Google Scholar 

  60. Chaturvedi A, Edison E, Arun N et al (2018) Two dimensional TiS2 as a promising insertion anode for Na-ion battery. Chem Select 3:524–528

    CAS  Google Scholar 

  61. David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770

    Article  CAS  Google Scholar 

  62. Yang J, Zhu J, Xu J et al (2017) MoSe2 nanosheet array with layered MoS2 heterostructures for superior hydrogen evolution and lithium storage performance. ACS Appl Mater Interfaces 9:44550–44559

    Article  CAS  Google Scholar 

  63. Chao D, Liang P, Chen Z et al (2016) Pseudocapacitive Na-Ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide Nanoarrays. ACS Nano 10:10211–10219

    Article  CAS  Google Scholar 

  64. Peng Q, Wang ZY, Sa BS et al (2016) Blue phosphorene/MS2 (M=Nb, Ta) heterostructures as promising flexible anodes for lithium-ion batteries. ACS Appl Mater Interfaces 8:13449–13457

    Article  CAS  Google Scholar 

  65. Xiang P, Chen XF, Liu J et al (2018) Borophene as conductive additive to boost the performance of MoS2-based anode materials. J Phys Chem C 122:9302–9311

    Article  CAS  Google Scholar 

  66. Samad A, Shin YH (2017) MoS2@VS2 nanocomposite as a superior hybrid anode material. ACS Appl Mater Interfaces 9:29942–29949

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangxu Lin , Shaowei Zhang or Dan A. Allwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, L., Zhang, S., Allwood, D.A. (2019). Transition Metal Dichalcogenides for Energy Storage Applications. In: Arul, N., Nithya, V. (eds) Two Dimensional Transition Metal Dichalcogenides. Springer, Singapore. https://doi.org/10.1007/978-981-13-9045-6_6

Download citation

Publish with us

Policies and ethics