Skip to main content

Recent Developments in the Research on Pressure-Gain Combustion Devices

  • Chapter
  • First Online:
Book cover Innovations in Sustainable Energy and Cleaner Environment

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Unlike conventional engines based on the Brayton cycle, detonation-based combustion devices can result in a net pressure gain, in addition to the temperature increase during the combustion process. Pulse detonation engines (PDEs) have been studied for more than seventy years. A brief overview of the fundamentals behind this engine concept is presented first, followed by the progress made up to a flight test of an aircraft using this engine. There is the potential to increase further the substantial performance gains made by the pulsed detonation engine (PDE) concept by moving from “pulsed” or “intermittent” detonations to a more “continuous” mode of operation with detonations. The rotating detonation engine (RDE) is an example of this approach. In this paper, an attempt is made to gather the key information presented in the previous publications in the open literature and to assess the potential for “rotating detonation-wave engines” (RDEs). Recent research is used to highlight the operation and performance of a generic rotating detonation-wave engine. The flow field within the engine is shown to be fairly complicated. However, it follows the “steady-state” thermal detonation cycle quite closely, unlike the PDE. Parametric studies varying the pressure conditions both upstream at the inlet plane and downstream through the back pressure reveal that the overall specific impulse is just a function of the ratio of the inlet stagnation pressure to the chamber back pressure for the generic device considered here. The importance of the inlet design in achieving reliable operation and performance is also highlighted. Finally, a brief overview of the global research efforts on this concept is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kailasanath K (2000) Review of propulsion applications of detonation waves. AIAA J 38(9):1698–1708

    Article  Google Scholar 

  2. Eidelman S, Grossmann W, Lottati I (1991) Review of propulsion applications and numerical simulations of the pulse detonation engine concept. J Prop Power 7(6):857–865

    Article  Google Scholar 

  3. Eidelman S, Grossmann W (1992) Pulsed detonation engine: experimental and theoretical review. AIAA paper 92-3168, AIAA, Reston, VA

    Google Scholar 

  4. Bussing T, Pappas G (1996) Pulse detonation engine theory and concepts. In: Murthy SNB, Curran ET (eds) Developments in high-speed-vehicle propulsion systems, Prog Astro Aero, vol. 165. AIAA, Reston, VA, pp 421–472

    Google Scholar 

  5. Kailasanath K (2001) A review of PDE research—performance estimates. AIAA paper 2001-0474, AIAA, Reston, VA

    Google Scholar 

  6. Kailasanath K (2001) A review of research on pulse detonation engine nozzles. AIAA paper 2001-3932, AIAA, Reston, VA

    Google Scholar 

  7. Roy GD, Frolov SM, Borisov AA, Netzer DW (2004) Pulse detonation propulsion: challenges, current status, and future perspective. Prog Energy Combust Sci 30(6):545–672

    Article  Google Scholar 

  8. Kailasanath K (2003) Recent developments in the research on pulse detonation engines. AIAA J 41(2):145–159

    Article  Google Scholar 

  9. Kailasanath K (2009) Research on pulse detonation combustion systems—a status report. AIAA paper 2009-0631, AIAA, Reston, VA

    Google Scholar 

  10. Hishida M, Fujiwara T, Wolanski P (2009) Fundamentals of rotating detonations. Shock Waves 19(1):1–10

    Article  Google Scholar 

  11. Kailasanath K (2011) The rotating-detonation-wave engine concept: a brief status report. AIAA paper 2011-0580, AIAA, Reston, VA

    Google Scholar 

  12. Wolański P (2013) Detonative propulsion. In: Proceedings of the combustion institute, vol 34. The Combustion Institute, Pittsburgh, PA, pp 125–158

    Article  Google Scholar 

  13. Rui Z, Dan W, Wang J (2016) Progress of continuously rotating detonation engines. Chin J Aeronaut 29(1):15–29

    Article  Google Scholar 

  14. Hoffmann N (1940) Reaction propulsion by intermittent detonative combustion. Ministry of Supply, Volkenrode Translation

    Google Scholar 

  15. Roy M (1946) Propulsion par Statoreacteur a Detonation, (Detonation Ramjet Propulsion), Comptes-Rendus de l’Acad. des Sciences, Paris, vol 222, pp 31–32

    Google Scholar 

  16. Reingold L (1950) Recherches sur les combustions permanentes apportees aux foyers a circulation interne supersonique (Investigations of steady combustion attained in internal supersonic flow combustors). ONERA TN2, Department of Energy and Propulsion, Study 728-E, March 1950

    Google Scholar 

  17. Bitondo D, Bollay W (1952) Preliminary performance analysis of the pulse-detonation-jet engine system. Aerophysics Development Corp., Report ADC-102-1, April 1952

    Google Scholar 

  18. Gross RA (1959) Exploratory study of combustion in supersonic flow. Air force office of scientific research, AFOSR-TN 59-587, June 1959

    Google Scholar 

  19. Gross RA, Chinitz W (1960) A study of supersonic combustion. J Aerosp Sci 27(7):517–525

    Article  Google Scholar 

  20. Nicholls JA, Wilkinson HR, Morrison RB (1957) Intermittent detonation as a thrust-producing mechanism. Jet Propul 27(5):534–541

    Article  Google Scholar 

  21. Dunlap R, Brehm RL, Nicholls JA (1958) A preliminary study of the application of steady-state detonative combustion to a reaction engine. Jet Propul 28(7):451–456

    Article  Google Scholar 

  22. Nicholls JA, Dabora EK, Gealer RL (1959) Studies in connection with stabilized gaseous detonation waves. In: Proceedings of the combustion institute, vol 7. The Combustion Institute, Pittsburgh, PA, pp 766–772

    Article  Google Scholar 

  23. Nicholls JA, Dabora EK (1962) Recent results on standing detonation waves. In: Proceedings of the combustion institute, vol 8. The Combustion Institute, Pittsburgh, PA, pp 644–655

    Article  Google Scholar 

  24. Voitsekhovskii BV (1959) Stationary detonation. Doklady Akad Nauk 129(6):1254–1256

    Google Scholar 

  25. Voitsekhovskii BV (1960) Stationary spin detonation. Sov J Appl Mech Tech Phys 3(1):157–164

    Google Scholar 

  26. Krzycki LJ (1962) Performance characteristics of an intermittent detonation device. U.S. Naval Ordnance Test Station, NavWeps Rept. 7655, ASTIA 284–312, China Lake, CA

    Google Scholar 

  27. Kailasanath K, Patnaik G, Li C (1999) Computational studies of pulse detonation engines: a status report. AIAA paper 99-2634, AIAA, Reston, VA

    Google Scholar 

  28. Kailasanath K, Patnaik G (2000) Performance estimates of pulsed detonation engines. In: Proceedings of the combustion institute, vol 28. The Combustion Institute, Pittsburgh, PA, pp 595–601

    Article  Google Scholar 

  29. Cooper M, Jackson S, Austin JM, Wintenberger E, Shepherd JE (2001) Direct experimental impulse measurements for detonations and deflagrations. AIAA 2001-3812, AIAA, Reston, VA

    Google Scholar 

  30. Li C, Kailasanath K, Patnaik G (2000) A numerical study of flow field evolution in a pulse detonation engine. AIAA paper 2000-0314, AIAA, Reston, VA

    Google Scholar 

  31. Jenkins TP, Sanders ST, Kailasanath K, Li C, Hanson RK (2000) Diode laser-based measurements for model validation in pulse detonation flows. In: Proceedings of the 25th JANNAF airbreathing propulsion meeting, Monterey, CA

    Google Scholar 

  32. Kailasanath K, Patnaik G, Li C (2001) On factors controlling the performance of pulsed detonation engines. In: Roy GD, Frolov SM, Netzer DW, Borisov AA (eds) High-speed deflagration and detonation: fundamentals and control. ENAS Publishers, Moscow, pp 193–206

    Google Scholar 

  33. Sanders ST, Mattison DW, Muruganandam TM, Hanson RK (2001) Multiplexed diode-laser absorption sensors for aeropropulsion flows. AIAA paper 2001-0412, AIAA, Reston, VA

    Google Scholar 

  34. Kailasanath K (2001) Verification and validation of pulsed detonation engine computations. In: Proceedings of the second joint meeting of the US sections of the combustion institute, Paper No. 142

    Google Scholar 

  35. Eidelman S, Yang X, Lottati I (1995) Pulsed detonation engine: key issues. AIAA paper 95-2754, AIAA, Reston, VA

    Google Scholar 

  36. Desbordes D, Daniau E, Zitoun R (2001) Pulsed detonation propulsion: key issues. In: Roy GD, Frolov SM, Netzer DW, Borisov AA (eds) High-speed deflagration and detonation: fundamentals and control. ENAS Publishers, Moscow, pp 177–192

    Google Scholar 

  37. Kailasanath K (2006) Liquid-fuelled detonations in tubes. J Propul Power 22(6):1261–1268

    Article  Google Scholar 

  38. Kasahara J, Tanahashi Y, Hirano M, Numata T, Matsuo A, Endo T (2004) Experimental investigation of momentum and heat transfer in pulse detonation rockets. AIAA paper 2004-0869, AIAA, Reston, VA

    Google Scholar 

  39. Kasahara J, Hirano M, Matsuo A, Sato S, Endo T, Satori S (2004) Flight experiments regarding ethlene-oxygen single-tube pulse detonation rockets. AIAA paper 2004-3918, AIAA, Reston, VA

    Google Scholar 

  40. Kasahara J, Hasegawa A, Nemoto T, Yamaguchi H, Yajima T, Kojima T (2007) Thrust demonstration of a pulse detonation rocket “TODOROKI”. AIAA paper 2007-5007, AIAA, Reston, VA

    Google Scholar 

  41. Barr L (2008) Pulse detonation engine flies into history. Press release, Air force material command. http://www.afmc.af.mil/news/story.asp?id=123098900, May 2008

  42. Voitsekhovskii BV, Mitrofanov VV, Topchiyan ME (1963) Structure of a detonation front in gases. Siberian Branch of the USSR Academy of Sciences, Novosibirsk

    Google Scholar 

  43. Mikhailov VV, Topchiyan ME (1965) Studies of continuous detonation in an annular channel. Fiz Goreniya Vzryva 2(4):20–26

    Google Scholar 

  44. Nicholls JA, Gullen RE, Ragland KW (1966) Feasibility studies of a rotating detonation wave rocket motor. J Spacecraft Rockets 3:893–898

    Article  Google Scholar 

  45. Kailasanath K (2017) Recent developments in the research on rotating detonation-wave engines. AIAA paper 2017-0784, AIAA, Reston, VA

    Google Scholar 

  46. Schwer DA, Kailasanath K (2011) Numerical study of engine size effects on rotating detonation engines. AIAA paper 2011-0581., AIAA, Reston, VA

    Google Scholar 

  47. Schwer DA, Kailasanath K (2014) Effect of low pressure ratio on exhaust plumes of rotating detonation engines. AIAA paper 2014-3901, AIAA, Reston, VA

    Google Scholar 

  48. Nordeen C, Schwer DA, Schauer F, Hoke J, Cetegen B, Barber T (2013) Thermodynamic modeling of a rotating detonation engine. AIAA paper 2013-1175, AIAA, Reston, VA

    Google Scholar 

  49. Schwer DA, Kailasanath K (2010) Numerical investigation of rotating detonation engines. AIAA 2010-6880, AIAA, Reston, VA

    Google Scholar 

  50. Schwer DA, Kailasanath K (2011) Numerical investigation of the physics of rotating-detonation-engines. In: Proceedings of the combustion institution, vol 33. The Combustion Institute, Pittsburgh, PA, pp 2195–2202

    Article  Google Scholar 

  51. Daniau E, Falempin F, Bykovxkii FA, Zhdan S (2005) Pulsed and rotating detonation propulsion system: first step toward operational engines. AIAA 2005-3233, AIAA, Reston, VA

    Google Scholar 

  52. Falempin F, Daniau E, Getin N, Bykovskii FA, Zhdan S (2006) Toward a continuous detonation wave rocket engine demonstrator. AIAA-2006-7956, AIAA, Reston, VA

    Google Scholar 

  53. Falempin F, Daniau E (2008) A contribution to the development of actual continuous detonation wave engine. AIAA 2008-2679, AIAA, Reston, VA

    Google Scholar 

  54. Falempin F (2008) Continuous detonation wave engine. In: Advances in propulsion technology for high-speed aircraft. RTO-EN-AVT-150, Paper 8, NATO

    Google Scholar 

  55. Davidenko D, Gökalp I, Kudryavtsev A (2008) Numerical study of the continuous detonation wave rocket engine. AIAA 2008-2680, AIAA, Reston, VA

    Google Scholar 

  56. BrahMos: https://en.wikipedia.org/wiki/BrahMos

  57. Lentsch A, Bec R, Serre L, Falempin F, Daniau E, Piton D, Prigent E, Canteins G, Zitoun R, Desbordes D, Jouot F, Gokalp I (2005) Overview of current French activities on PDRE and continuous detonation wave rocket engines. AIAA 2005-3232, AIAA, Reston, VA

    Google Scholar 

  58. Wolanski P, Kindracki J, Fujiwara T (2006) An experimental study of small rotating detonation engine. In: Roy G, Frolov S, Sinibaldi J (eds) Pulsed and continuous detonations. Torus Press, Moscow, pp 332–338

    Google Scholar 

  59. Yi T-H, Turangan C, Lou J, Wolanski P, Kindracki J (2009) A three-dimensional numerical study of rotational detonation in an annular chamber. AIAA paper 2009-634, AIAA, Reston, VA

    Google Scholar 

  60. Tobita A, Fujiwara T, Wolanski P (2010) Detonation engine and flying object. United States patent US 7784267

    Google Scholar 

  61. Kindracki J, Wolanski P, Gut Z (2011) Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves 21(2):75–84

    Article  Google Scholar 

  62. Wolanski P (2011) Rotating detonation wave stability. In: 23rd international colloquium on the dynamics of explosions and reactive systems. IDERS, Irvine, CA, pp 1–10

    Google Scholar 

  63. Wolanski P (2013) Detonation propulsion. In: Proceedings of the Combustion Institution, vol 34. The Combustion Institute, Pittsburgh, PA, pp 125–158

    Google Scholar 

  64. Wolanski P (2014) Detonation engine research in Poland. In: 2014 international workshop on detonation for propulsion. IWDP, Warsaw, Poland

    Google Scholar 

  65. Wang JP, Shi TY, Wang YH, Liu YS, Li YS (2010) Experimental research on the rotating detonation engine. In: 14th shock wave and shock tube conference. ISSW, Huang Shan, China

    Google Scholar 

  66. Wang YH, Wang JP, Shi TY, Liu YS (2012) Experimental research on transition regions in continuously rotating detonation waves. AIAA 2012-3946, AIAA, Reston, VA

    Google Scholar 

  67. Wang YH, Wang JP, Liu YS, Li Y (2013) Experimental investigation on continuously rotating detonation engines. In: 2013 Asia-Pacific international symposium on aerospace technology

    Google Scholar 

  68. Wang YH, Wang JP, Shi TY (2013) Discovery of breathing phenomena in continuously rotating detonation. Proc Eng 67:188–196

    Article  Google Scholar 

  69. Kasahara J, Matsuoka K, Sakamoto R, Ikeguchi KB, Sakumi T, Morozumi T, Matsuo A, Funaki I (2012) Multitube-rotary-valved pulse detonation rocket engine for flight test. In: 2012 international workshop on detonation for propulsion. IWDP, Tsukuba, Japan

    Google Scholar 

  70. Kasahara J, Kato Y, Ishihara K, Matsuoka K, Matsuo A, Funaki I, Nakata D, Higashino K, Tanatsugu K (2016) Research and development of rotating detonation engine for upper-stage kick motor system. In: 2016 international workshop on detonation for propulsion. IWDP, Singapore

    Google Scholar 

  71. Uemura Y, Hayashi AK, Asahara M, Tsuboi N, Yamada E (2013) Transverse wave generation mechanism in rotating detonation. Proc Combust Inst 34(2):1981–1989

    Article  Google Scholar 

  72. Tsuboi N, Watanabe Y, Kojima T, Hayashi AK (2013) Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen–oxygen mixture. In: Proceedings of the combustion institution, vol 35. The Combustion Institute, Pittsburgh, PA, pp 2005–2013

    Article  Google Scholar 

  73. Tsuboi N, Hayashi AK, Kojima T (2013) Numerical study on a rotating detonation engine at KIT. In: 2013 international workshop on detonation for propulsion. IWDP, Tainan, Taiwan

    Google Scholar 

  74. Hayashi AK (2013) Two-phase detonation and its application to PDE and recent results of RDE. In: 2013 international workshop on detonation for propulsion. IWDP, Tainan, Taiwan

    Google Scholar 

  75. Hayashi AK, Kimura Y, Yamada T, Yamada E (2009) Sensitivity analysis of rotating detonation engine with a detailed reaction model. AIAA 2009-0633, AIAA, Reston, VA

    Google Scholar 

  76. Yamada T, Hayashi AK, Yamada E, Tsuboi N, Tangirala VE, Fujiwara T (2010) Numerical analysis of threshold of limit detonation in rotating detonation engine. AIAA 2010-0153, AIAA, Reston, VA

    Google Scholar 

  77. Nakagami S, Matsuoka K, Kasahara J, Kumazawa Y, Fujii J, Matsuo A, Funaki I (2015) Experimental visualization of the structure of rotating detonation waves in a disk-shaped combustor. AIAA paper no. 2015-4102, AIAA, Reston, VA

    Google Scholar 

  78. Teo CJ, Li JM, Li L, Nguyen VB (2016) Detonation engine research at the Temasek laboratories, Singapore. In: 2016 international workshop on detonation for propulsion. IWDP, Singapore

    Google Scholar 

  79. Choi JY (2016) Research progress of detonation studies for propulsion in PNU. In: 2016 international workshop on detonation for propulsion. IWDP, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazhikathra Kailasanath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kailasanath, K. (2020). Recent Developments in the Research on Pressure-Gain Combustion Devices. In: Gupta, A., De, A., Aggarwal, S., Kushari, A., Runchal, A. (eds) Innovations in Sustainable Energy and Cleaner Environment. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9012-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9012-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9011-1

  • Online ISBN: 978-981-13-9012-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics