Advertisement

Lanczos Potential For the Spacetime Solutions

Chapter
  • 442 Downloads

Abstract

In previous chapters (i.e. 4-6), it is observed that the tetrad formalisms provide an efficient way for finding the Lanczos potential in some general situations. Using those prescriptions, the Lanczos potential for some well-known solutions of Einstein and Einstein-Maxwell equations has been obtained here. Some other methods, apart from tetrad formalism, for finding the Lanczos potential have also been discussed.

References

  1. 1.
    Ahsan, Z.: Tensors: Mathematics of Differential Geometry and Relativity. Second Printing, PHI Learning Pvt. Ltd, Delhi (2017)Google Scholar
  2. 2.
    Ahsan, Z., Caltenco, J.H., Lopez-Bonilla, J.L.: Annalen der Physik 16(4), 311–313 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ahsan, Z., Caltencho, J.H., Linares Y.M.R., Lopez-Bonilla, J.: Commun. Phys. 20(1), 9–14 (2010)Google Scholar
  4. 4.
    Ali, M., Ahsan, Z.: SUT J. Maths. 49(2), 129–143 (2013)Google Scholar
  5. 5.
    Ares de Parga, G., Lopez Bonilla, J., Ovando, G., Matos, T.: Rev. Mex. Fis. 35(3), 393–409 (1989)Google Scholar
  6. 6.
    Caltenco, J.H., Lopez-Bonilla, J., Morales, J., Ovando, G.: Chinese. J. Phys. 39, 397–400 (2001)Google Scholar
  7. 7.
    Caltenco, J.H., Lopez-Bonilla, J., Ovando, G., Rivera, J.: Apeiron 9, 38–42 (2002)Google Scholar
  8. 8.
    Collinson, C.D.: J. Math. Phys. 9, 403–410 (1968)CrossRefGoogle Scholar
  9. 9.
    Dolan, P., Kim, C.W.: Proc. Roy. Soc. Lond. A 447, 577–585 (1994)CrossRefGoogle Scholar
  10. 10.
    Edgar, S.B., Höglund, A.: Proc. Roy. Soc. Lond. A 453, 835–851 (1997)CrossRefGoogle Scholar
  11. 11.
    Eguchi, K.: J. Math. Tokoshima Univ. 1, 17–27 (1967)Google Scholar
  12. 12.
    Ehler, J., Kundt, W.: Article in Gravitation: An Introduction to Current Research. Edited by Luis Witten (1962)Google Scholar
  13. 13.
    Fuentes, R., Lopez-Bonilla, J., Ovando, G., Matos, T.: Gen. Rel. Grav. 21, 777–784 (1989)CrossRefGoogle Scholar
  14. 14.
    Gaftoi, V., Morales, J., Ovando, G., Pen̂a, J.J.: Nuovo Cimento B 113, 1297 (1998)Google Scholar
  15. 15.
    Gaftoi, V., Lopez-Bonilla, J., Ovando, G.: Int. J. Theo. Phys. 38, 939–943 (1999)CrossRefGoogle Scholar
  16. 16.
    Gaftoi, V., Lopez-Bonilla, J., Ovando, G.: Nuovo Cimento B 113, 1489–1492 (1998)Google Scholar
  17. 17.
    Gödel, K.: Rev. Mod. Phys. 21, 447–450 (1949)CrossRefGoogle Scholar
  18. 18.
    Goenner, H.F.: Tensor (N.S.) 30, 15 (1976)Google Scholar
  19. 19.
    Gonzalez, G., Lopez-Bonilla, J., Rosales, M.: Pramana. J. Phys. 42, 85–88 (1994)Google Scholar
  20. 20.
    Griffiths, J.B., Krtous, P., Podolsky, J.: Interpreting the C-metric. arXiv:gr-qc/0609065v1 (15 Sept. 2006)
  21. 21.
    Hasmani, A.H., Panchal, R.: Eur. Phys. J. Plus 131, 336–341 (2016)Google Scholar
  22. 22.
    Ibohal, N.G.: Astrophys. Space Sci. 249, 73–93 (1997)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kaigorodov, V.R.: Sov. Phys. Doklady 7, 893 (1963)Google Scholar
  24. 24.
    Kantowski, R., Sachs, R.K.: J. Math. Phys. 7, 443 (1966)CrossRefGoogle Scholar
  25. 25.
    Kasner, E.: Am. J. Math. 43, 217 (1921)CrossRefGoogle Scholar
  26. 26.
    Kerr, R.P.: Phys. Rev. Lett. 11, 237–238 (1963)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kinnersley, W.: J. Math. Phys. 10, 1195 (1969)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lanczos, C.: Ann. Math. 39, 842–850 (1938)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lopez-Bonilla, J., Morales, J., Rosales, M.: Braz. J. Phys. 24, 522–525 (1994)Google Scholar
  30. 30.
    Lopez-Bonilla, J., Nunez-Yepez, H.N.: Pramana. J. Phys. 46, 219–221 (1996)Google Scholar
  31. 31.
    Lopez-Bonilla, J., Ovando, G., Rivera, J.: Nuovo Cimento B 112, 1433–1436 (1997)Google Scholar
  32. 32.
    Lopez-Bonilla, J., Ovando, G., Rivera, J.: Alig. Bull. Maths. 17, 63–66 (1997–98)Google Scholar
  33. 33.
    Lopez-Bonilla, J., Morales, J., Ovando, G.: Gen. Rel. Grav. 31, 413–415 (1999)CrossRefGoogle Scholar
  34. 34.
    Lopez-Bonilla, J., Ovando, G., Pena, J.J.: Found. Phys. Lett. 12, 401–405 (1999)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lopez-Bonilla, J., Morales, J., Ovando, G.: Indian J. Maths. 42, 309–312 (2000)Google Scholar
  36. 36.
    Lopez-Bonilla, J., Morales, J., Ovando, G.: Indian. J. Phys. B 74, 397–398 (2000)Google Scholar
  37. 37.
    Lovelock, D.: J. Math. Phys. 13, 874–876 (1972)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Newman, E.T., Couch, E., Chinnapared, K., Exton, E., Prakash, A., Torrence, R.: J. Math. Phys. 6, 918–919 (1965)CrossRefGoogle Scholar
  39. 39.
    O’Donell, P.J.: Gen. Rel. Grav. 36, 1415–1422 (2004)CrossRefGoogle Scholar
  40. 40.
    O’Donell, P.J.: Czech. J. Phys. 54, 889–896 (2004)Google Scholar
  41. 41.
    Petrov, A.Z.: Recent Developments in General Relativity. Pergamon Press (1962)Google Scholar
  42. 42.
    Raychaudhuri, A.: Phys. Rev. 98, 1123–1126 (1955)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, UK (2003)CrossRefGoogle Scholar
  44. 44.
    Szekeres, P.: Nuovo Cimento A43, 1062 (1966)CrossRefGoogle Scholar
  45. 45.
    Taub, A.H.: Ann. Math. 53, 472 (1951)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Vaidya, P.C.: Curr. Sci. 12, 12 (1943)Google Scholar
  47. 47.
    Vaidya, P.C.: Proc. Indian Acad. Sci. 33, 264 (1951)CrossRefGoogle Scholar
  48. 48.
    Weyl, H.: Ann. Physik 54, 117 (1917)CrossRefGoogle Scholar
  49. 49.
    Zund, J.D.: Ann. Mat. Pure Appl. 104, 239–268 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations