Advertisement

Lanczos Potential and Perfect Fluid Spacetimes

Chapter
  • 444 Downloads

Abstract

For a given spacetime geometry, the construction of Lanczos potential is equivalent to solving Weyl-Lanczos equation along with the constraints equations. Here, we shall use NP formalism to obtain the Lanczos potential and Lanczos scalars for perfecr fluid spacetimes, which in turn leads to a solution of Weyl-Lanczos equations.

References

  1. 1.
    Ahsan, Z.: Indian J. Pure Appl. Maths. 30, 863–869 (1999)Google Scholar
  2. 2.
    Ahsan, Z.: Tensors: Mathematics of Differential Geometry and Relativity. PHI Learning Pvt. Ltd., Delhi (2015)zbMATHGoogle Scholar
  3. 3.
    Ahsan, Z., Bilal, M.: Int. J. Theo. Phys. 50, 1752–1768 (2011)CrossRefGoogle Scholar
  4. 4.
    Ahsan, Z., Ahsan, N., Ali, S.: Bull. Cal. Math. Soc. 93(5), 407–422 (2001)Google Scholar
  5. 5.
    Dolan, P., Muratori, B.D.: J. Math. Phys. 39, 5404–5420 (1998)CrossRefGoogle Scholar
  6. 6.
    Ellis, G.F.R.: Relativistic cosmology-article in general relativity and cosmology. In: Sachs, R.K. (Eds.), Proceedings International School of Physics “Enrico Fermi”, pp. 104–179. Acad. Press, New York (1971)Google Scholar
  7. 7.
    Ellis, G.F.R., Elst, H.V.: Cosmological Models. arXiv:gr-qc/9812046v5 (2 Sep. 2008)
  8. 8.
    Gödel, K.: Rev. Mod. Phys. 21, 447–450 (1949)CrossRefGoogle Scholar
  9. 9.
    Heckmann, O., Shücking, E.: Article in gravitation-an introduction to current research. In: Witten, L. (Ed.) Wiley New York (1962)Google Scholar
  10. 10.
    Kasner, E.: Am. J. Math. 43, 217 (1921)CrossRefGoogle Scholar
  11. 11.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, New York, Fourth revised English edition (1975)Google Scholar
  12. 12.
    Maiti, S. R.: Gen. Rel. Grav. 16(3), 297 (1984)Google Scholar
  13. 13.
    Novello, M., Velloso, A.L.: Gen. Rel. Grav. 19, 1251–1265 (1987)CrossRefGoogle Scholar
  14. 14.
    Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, UK (2003)CrossRefGoogle Scholar
  15. 15.
    Taub, A.H.: Ann. Math. 53, 472 (1951)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations