Advertisement

Lanczos Potential for Algebraically Special Spacetimes

Chapter
  • 442 Downloads

Abstract

The Lanczos potential for algebraically special gravitational fields has been obtained using NP and GHP formalisms. The results thus obtained are supported by examples.

References

  1. 1.
    Ahsan, Z.: Indian J. Pure Appl. Maths. 31(2), 215–225 (2000)Google Scholar
  2. 2.
    Ahsan, Z., Bilal, M.: Int. J. Theo. Phys. 49, 2713–2722 (2010)CrossRefGoogle Scholar
  3. 3.
    Ahsan, Z., Bilal, M.: J. Tensor Soc. 6(2), 127–134 (2012)MathSciNetGoogle Scholar
  4. 4.
    Ahsan, Z., Bilal, M.: Int. J. Theo. Phys. 52, 4275–4282 (2013)CrossRefGoogle Scholar
  5. 5.
    Ahsan, Z., Ahsan, N., Ali, S.: Bull. Cal. Math. Soc. 93(5), 407–422 (2001)Google Scholar
  6. 6.
    Ahsan, Z., Ahsan, N., Ali, S.: Maths. Today 19(2), 25–34 (2001)Google Scholar
  7. 7.
    Ahsan, Z., Bilal, M., Lopez-Bonilla, J.: J. Vectorial Relat. 5(3), 1–8 (2010)Google Scholar
  8. 8.
    Ares de Parga, G., Oscar Chavoya, A., Lopez Bonilla, J.L.: J. Math. Phys. 30, 1294–1295 (1989)Google Scholar
  9. 9.
    Bergqvist, G.: J. Math. Phys. 38, 3142–3154 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Debney, G.C., Wilkes, J.M., Zund, J.D.: Tensor. N. S. 35, 267 (1981)Google Scholar
  11. 11.
    Debney, G.C., Wilkes, J.M., Zund, J.D.: Tensor. N. S. 37, 90 (1982)Google Scholar
  12. 12.
    Gaftoi, V., Lopez-Bonilla, J.L., Morales, J., Naverrete, D., Ovando, G.: Rev. Mex. Fis. 36, 498 (1990); 37, 638 (1991)Google Scholar
  13. 13.
    Gaftoi, V., Lopez-Bonilla, J.L., Morales, J., Ovando, G., Pen̂a, J.J.: J. Moscow Phys. Soc. 6, 267–278 (1996)Google Scholar
  14. 14.
    Gaftoi, V., Morales, J., Ovando, G., Pen̂a, J.J. Nuovo Cimento B 113, 1297 (1998)Google Scholar
  15. 15.
    Gaftoi, V., Lopez Bonilla J.L., Ovando, G., Pen̂a, J.J.: Nuovo Cimento B 113, 1493–1496 (1998)Google Scholar
  16. 16.
    Hauser, I.: Phys. Rev. Lett. 33, 1112 (1974)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Held, A.: Comm. Math. Phys. 37, 311 (1974)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Held, A.: Lett. al Nuovo Cimento 11, 545 (1974)CrossRefGoogle Scholar
  19. 19.
    Held, A.: J. Math. Phys. 17, 39–45 (1976)CrossRefGoogle Scholar
  20. 20.
    Held, A.: Gen. Rel. Grav. 7, 177 (1976)Google Scholar
  21. 21.
    Kaigorodov, V.R.: Sov. Phys. Doklady 7, 893 (1963)Google Scholar
  22. 22.
    Kundt, W.: Z. Phyzik 163, 77 (1961)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ludwig, G., Edgar, S.B.: Class Quantum Grav. 14, 3453 (1997)CrossRefGoogle Scholar
  24. 24.
    Radhakrishna, L., Singh, N.I.: J. Math. Phys. 25, 2293 (1984)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Robinson, I.: Gen. Rel. Grav. 6, 423 (1975)CrossRefGoogle Scholar
  26. 26.
    Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, UK (2003)CrossRefGoogle Scholar
  27. 27.
    Wilkes, J.M., Zund, J.D.: Tensor N. S. 37, 16 (1982)MathSciNetGoogle Scholar
  28. 28.
    Zund, J.D.: Ann. Mat. Pure Appl. 104, 239–268 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations