Advertisement

The Newman–Penrose Formalism

Chapter
  • 497 Downloads

Abstract

The Newman–Penrose formalism (also known as spin-coefficient formalism) is a tetrad formalism with special choice of the basis vector. The beauty of this formalism, when it was first proposed by Newman and Penrose in 1962 (Newman and Penrose in J Math Phys 3:566–578, 1962 [13]), was precisely in their choice of a null basis. A detailed study of this formalism has been made here.

References

  1. 1.
    Ahsan, Z.: Proc. Ind. Acad. Sc. 88A, 125–132 (1979)Google Scholar
  2. 2.
    Ahsan, Z.: J. Moscow Phys. Soc. 5, 215–222 (1995)Google Scholar
  3. 3.
    Ahsan, Z.: Acta Phys. Sin. 4, 337–343 (1995)Google Scholar
  4. 4.
    Ahsan, Z.: Indian J. Pure Appl. Maths. 31(2), 215–225 (2000)Google Scholar
  5. 5.
    Ahsan, Z.: Tensors: Mathematics of Differential Geometry and Relativity, Second Printing. PHI Learning Pvt. Ltd, Delhi (2017)Google Scholar
  6. 6.
    Ahsan, Z., Ali, M.: Int. J. Theo. Phys. 51, 2044–2055 (2012)CrossRefGoogle Scholar
  7. 7.
    Ahsan, Z., Ali, M.: Int. J. Theo. Phys. 54, 1397–1407 (2015)CrossRefGoogle Scholar
  8. 8.
    Chandrashekhar, S.: Mathematical Theory of Black Holes. Oxford University Press, New York (1983)Google Scholar
  9. 9.
    Frolov, V.P.: The Newman-Penrose method in theory of general relativity. In: Basov, N.G. (ed.) Problems in General Theory of Relativity and the Theory of Group Representation. Plenum Press, New York (1979)Google Scholar
  10. 10.
    Lind, R.W.: Gen. Rel. Grav. 5, 25 (1974)CrossRefGoogle Scholar
  11. 11.
    Lind, R.W., Messmer, J., Newman, E.T.: J. Math. Phys. 13, 1884 (1972)CrossRefGoogle Scholar
  12. 12.
    Ludwig, G.: Am. J. Phys. 37, 1225 (1969)CrossRefGoogle Scholar
  13. 13.
    Newman, E.T., Penrose, R.: J. Math. Phys. 3, 566–578 (1962)CrossRefGoogle Scholar
  14. 14.
    Penrose, R.: Ann. Phys. 10, 171 (1960)CrossRefGoogle Scholar
  15. 15.
    Penrose, R., Rindler, W.: Spinors and Spacetime. Cambridge University Press, New York (1984)CrossRefGoogle Scholar
  16. 16.
    Petrov, A.Z.: Sc. Not. Kazan State Univ. 114, 55 (1954)Google Scholar
  17. 17.
    Petrov, A.Z.: Dissertation, Moscow State University (1957)Google Scholar
  18. 18.
    Pirani, F.A.E., Trautman, A., Bondi, H.: Lectures on General Relativity: Brandeis Summer Institute in Theoretical Physics. Prentice-Hall, N. J. (1965)Google Scholar
  19. 19.
    Sachs, R.K.: Proc. Roy. Soc. Lond. A 264, 309 (1961)Google Scholar
  20. 20.
    Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, UK (2003)CrossRefGoogle Scholar
  21. 21.
    Synge, J.: Comm. Dublin Inst. Adv. St. A 15 (1969)Google Scholar
  22. 22.
    Talbot, C.J.: J. Math. Phys. 13, 45 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations