Skip to main content

A Multi-class Image Classifier for Assisting in Tumor Detection of Brain Using Deep Convolutional Neural Network

  • Chapter
  • First Online:
Advanced Computing and Systems for Security

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 996))

Abstract

Segmentation of brain tumor is a very crucial task from the medical points of view,  such as in surgery and treatment planning. The tumor can be noticeable at any region of the brain with various size and shape due to its nature, that makes the segmentation task more difficult. In this present work, we propose a patch-based automated segmentation of brain tumor using a deep convolutional neural network with small convolutional kernels and leaky rectifier linear units (LReLU) as an activation function. Present work efficiently segments multi-modalities magnetic resonance (MR) brain images into normal and tumor tissues. The presence of small convolutional kernels allow more layers to form a deeper architecture and less number of the kernel weights in each layer during training. Leaky rectifier linear unit (LReLU) solves the problem of rectifier linear unit (ReLU) and increases the speed of the training process. The present work can deal with both high- and low-grade tumor regions on MR images. BraTS 2015 dataset has been used in the present work as a standard benchmark dataset. The presented network takes T1, T2, T1c, and FLAIR MR images from each subject as inputs and produces the segmented labels as outputs. It is experimentally observed that the present work has obtained promising results than the existing algorithms depending on the ground truth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  2. Bauer, S., Wiest, R., Nolte, L.-P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)

    Article  Google Scholar 

  3. Bal, A., Banerjee, M., Sharma, P., Maitra, M.: Brain tumor segmentation on MR image using k-means and fuzzy-possibilistic clustering. In: 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), pp. 1–8. IEEE, New York (2018)

    Google Scholar 

  4. Bal, A., Banerjee, M., Chakrabarti, A., Sharma, P.: MRI brain tumor segmentation and analysis using rough-fuzzy c-means and shape based properties. J. King Saud Univ.-Comput. Inf. Sci. (2018)

    Google Scholar 

  5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  6. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Lyksborg, M., Puonti, O., Agn, M., Larsen, R.: An ensemble of 2D convolutional neural networks for tumor segmentation. In: Scandinavian Conference on Image Analysis, pp. 201–211. Springer, Berlin (2015)

    Chapter  Google Scholar 

  8. Kleesiek, J., Biller, A., Urban, G., Kothe, U., Bendszus, M., Hamprecht, F.: Ilastik for multi-modal brain tumor segmentation. In: Proceedings MICCAI BraTS (Brain Tumor Segmentation Challenge), pp. 12–17 (2014)

    Google Scholar 

  9. Dvořák, P., Menze, B.: Local structure prediction with convolutional neural networks for multimodal brain tumor segmentation. In: International MICCAI Workshop on Medical Computer Vision, pp. 59–71. Springer, Berlin (2015)

    Chapter  Google Scholar 

  10. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  11. Rajendran, A., Dhanasekaran, R.: Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: a combined approach. Proc. Eng. 30, 327–333 (2012)

    Article  Google Scholar 

  12. Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imaging 31(3), 790–804 (2012)

    Article  Google Scholar 

  13. Havaei, M., Larochelle, H., Poulin, P., Jodoin, P.-M.: Within-brain classification for brain tumor segmentation. Int. J. Comput. Assist. Radiol. Surg. 11(5), 777–788 (2016)

    Article  Google Scholar 

  14. Khotanlou, H., Colliot, O., Atif, J., Bloch, I.: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160(10), 1457–1473 (2009)

    Article  MathSciNet  Google Scholar 

  15. Selvakumar, J., Lakshmi, A., Arivoli, T.: Brain tumor segmentation and its area calculation in brain MR images using k-mean clustering and fuzzy c-mean algorithm. In: 2012 International Conference on Advances in Engineering, Science and Management (ICAESM), pp. 186–190. IEEE, New York (2012)

    Google Scholar 

  16. Rajendran, A., Dhanasekaran, R.: Brain tumor segmentation on MRI brain images with fuzzy clustering and GVF snake model. Int. J. Comput. Commun. Control 7(3), 530–539 (2014)

    Article  Google Scholar 

  17. Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014)

    Google Scholar 

  18. Hussain, S., Anwar, S.M., Majid, M.: Brain tumor segmentation using cascaded deep convolutional neural network. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1998–2001. IEEE, New York (2017)

    Google Scholar 

  19. Rao, V., Sarabi, M.S., Jaiswal, A.: Brain tumor segmentation with deep learning. In: MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), pp. 56–59 (2015)

    Google Scholar 

  20. Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D.: A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI. Med. Image Comput. Comput.-Assist. Interv.-MICCAI 2008, 67–75 (2008)

    Google Scholar 

  21. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  22. Kaus, M.R., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated segmentation of MR images of brain tumors. Radiology 218(2), 586–591 (2001)

    Article  Google Scholar 

  23. Li, C., Gore, J.C., Davatzikos, C.: Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn. Reson. Imaging 32(7), 913–923 (2014)

    Article  Google Scholar 

  24. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  26. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, vol. 30, p. 3 (2013)

    Google Scholar 

  27. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 (2012)

  28. Wong, S.C., Gatt, A., Stamatescu, V., McDonnell, M.D.: Understanding data augmentation for classification: when to warp? In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–6. IEEE, New York (2016)

    Google Scholar 

  29. Fawzi, A., Samulowitz, H., Turaga, D., Frossard, P.: Adaptive data augmentation for image classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3688–3692. IEEE, New York (2016)

    Google Scholar 

  30. Wang, J., Perez, L.: The effectiveness of data augmentation in image classification using deep learning. Technical report (2017)

    Google Scholar 

  31. Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumor Segmentation Challenge. Proceedings, Winning Contribution, pp. 31–35 (2014)

    Google Scholar 

  32. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11) (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Board of Research in Nuclear Sciences (BRNS), DAE, Government of India under the Reference No. 34/14/13/2016-BRNS/34044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bal, A., Banerjee, M., Sharma, P., Chaki, R. (2020). A Multi-class Image Classifier for Assisting in Tumor Detection of Brain Using Deep Convolutional Neural Network. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds) Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, vol 996. Springer, Singapore. https://doi.org/10.1007/978-981-13-8969-6_6

Download citation

Publish with us

Policies and ethics