Skip to main content

Structure and Dynamics of Water-TiO2 Interface

  • Chapter
  • First Online:
Structures and Dynamics of Interfacial Water

Part of the book series: Springer Theses ((Springer Theses))

  • 562 Accesses

Abstract

In this chapter, I will discuss the study of the structure and dynamics of water-TiO2 interface. The interfacial structure of water in contact with TiO2 is the key to understand the mechanism of photocatalytic water dissociation as well as photoinduced superhydrophilicity. I investigate the interfacial molecular structure of water at the surface of anatase TiO2, using phase sensitive sum frequency generation spectroscopy together with spectra simulation using ab initio molecular dynamic trajectories. I identify two oppositely oriented, weakly and strongly hydrogen-bonded sub-ensembles of O–H groups at the superhydrophilic UV-irradiated TiO2 surface. The water molecules with weakly hydrogen bonded O–H groups are chemisorbed, i.e. form hydroxyl groups, at the TiO2 surface with their hydrogen atoms pointing towards bulk water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang R, Hashimoto K, Fujishima A et al (1997) Light-induced amphiphilic surfaces. Nature 388:431

    Article  ADS  Google Scholar 

  2. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  ADS  Google Scholar 

  3. Lo WJ, Chung YW, Somorjai GA et al (1978) Electron spectroscopy studies of the chemisorption of O2, H2 and H2O on the TiO2 (100) surfaces with varied stoichiometry: evidence for the photogeneration of Ti+3 and for its importance in chemisorption. Surf Sci 71:199–219

    Article  ADS  Google Scholar 

  4. Kurtz RL, Stock-Bauer R, Msdey TE et al (1989) Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf Sci 218:178–200

    Article  ADS  Google Scholar 

  5. Wendt S, Schaub R, Matthiesen J et al (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: a combined high-resolution STM and DFT study. Surf Sci 598:226–245

    Article  ADS  Google Scholar 

  6. Tan S, Feng H, Ji Y et al (2012) Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2 (110)-1×1 surface. J Am Chem Soc 134:9978–9985

    Article  Google Scholar 

  7. Nosaka AY, Nosaka Y (2005) Characteristics of water adsorbed on TiO2 photocatalytic surfaces as studied by 1H NMR spectroscopy. Bull Chem Soc Jpn 78:1595–1607

    Article  Google Scholar 

  8. Wang R, Sakai N, Fujishima A et al (1999) Studies of surface wettability conversion on TiO2 single-crystal surfaces. J Phys Chem B 103:2188–2194

    Article  Google Scholar 

  9. Sakai N, Fujishima A, Watanabe T, Hashimoto K (2003) Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J Phys Chem B 107:1028–1035

    Article  Google Scholar 

  10. Nosaka AY, Fujiwara T, Yagi H et al (2004) Characteristics of water adsorbed on TiO2 photocatalytic systems with increasing temperature as studied by solid-state 1H NMR spectroscopy. J Phys Chem B 108:9121–9125

    Article  Google Scholar 

  11. Serrano G, Bonanni B, Di Giovannantonio M et al (2015) Molecular ordering at the Interface between liquid water and rutile TiO2 (110). Adv Mater Interfaces 2:2–7

    Article  Google Scholar 

  12. Kimmel GA, Baer M, Petrik NG et al (2012) Polarization-and azimuth-resolved infrared spectroscopy of water on TiO2 (110): anisotropy and the hydrogen-bonding network. J Phys Chem Lett 3:778–784

    Article  Google Scholar 

  13. De Angelis F, Di Valentin C, Fantacci S et al (2014) Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem Rev 114:9708–9753

    Article  Google Scholar 

  14. Miranda PB, Shen YR (1999) Liquid interfaces: a study by sum-frequency vibrational spectroscopy. J Phys Chem B 103:3292–3307

    Article  Google Scholar 

  15. Rey R, Møller KB, Hynes JT (2002) Hydrogen bond dynamics in water and ultrafast infrared spectroscopy. J Phys Chem A 106:11993–11996

    Article  Google Scholar 

  16. Kataoka S, Gurau MC, Albertorio F et al (2004) Investigation of water structure at the TiO2/aqueous interface. Langmuir 20:1662–1666

    Article  Google Scholar 

  17. Uosaki K, Yano T, Nihonyanagi S (2004) Interfacial water structure at As-prepared and UV-induced hydrophilic TiO2 surfaces studied by sum frequency generation spectroscopy and quartz crystal microbalance. J Phys Chem B 108:19086–19088

    Article  Google Scholar 

  18. Pan D, Liu L-MM, Tribello GA et al (2010) Surface energy and surface proton order of the ice Ih basal and prism surfaces. J Phys: Condens Matter 22:074209

    ADS  Google Scholar 

  19. Cheng J, Sprik M (2010) Acidity of the aqueous rutile TiO2 (110) surface from density functional theory based molecular dynamics. J Chem Theory Comput 6:880–889

    Article  Google Scholar 

  20. Sumita M, Hu C, Tateyama Y et al (2010) Interface water on TiO2 anatase (101) and (001) surfaces: first-principles study with TiO2 slabs dipped in bulk water. J Phys Chem C 114:18529–18537

    Article  Google Scholar 

  21. Wahab HS, Bredow T, Aliwi SM (2008) Computational investigation of water and oxygen adsorption on the anatase TiO2 (100) surface. J Mol Struct (Thoechem) 868:101–108

    Article  Google Scholar 

  22. Cheng H, Selloni A (2010) Hydroxide ions at the water/anatase TiO2(101) interface: structure and electronic states from first principles molecular dynamics. Langmuir 26:11518–11525

    Article  Google Scholar 

  23. Mattioli G, Filippone F, Caminiti R, Bonapasta AA (2008) Short hydrogen bonds at the water/TiO2 (anatase) interface. J Phys Chem C 112:13579–13586

    Article  Google Scholar 

  24. Tilocca A, Selloni A (2004) Vertical and lateral order in adsorbed water layers on anatase TiO2(101). Langmuir 20:8379–8384

    Article  Google Scholar 

  25. Pedota M, Bandura AV, Cummings PT et al (2004) Electric double layer at the rutile (110) surface. 1. Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials. J Phys Chem B 108:12049–12060

    Article  Google Scholar 

  26. Liu L, Zhang C, Thornton G, Michaelides A (2010) Structure and dynamics of liquid water on rutile TiO2(110). Phys Rev B 82:161415

    Article  ADS  Google Scholar 

  27. Koitaya T, Nakamura H, Yamashita K (2009) First-principle calculations of solvated electrons at protic solvent-TiO2 interfaces with oxygen vacancies. J Phys Chem C 113:7236–7245

    Article  Google Scholar 

  28. Nakamura H, Ohto T, Nagata Y (2013) Polarizable site charge model at liquid/solid interfaces for describing surface polarity: application to structure and molecular dynamics of water/rutile TiO2(110) interface. J Chem Theory Comput 9:1193–1201

    Article  Google Scholar 

  29. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  ADS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  ADS  Google Scholar 

  31. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54:1703–1710

    Article  ADS  Google Scholar 

  32. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104

    Article  ADS  Google Scholar 

  33. Nagata Y, Ohto T, Bonn M, Kühne TD (2016) Surface tension of ab initio liquid water at the water-air interface. J Chem Phys 144:204705

    Article  ADS  Google Scholar 

  34. Ohto T, Usui K, Hasegawa T et al (2015) Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function. J Chem Phys 143:124702

    Article  ADS  Google Scholar 

  35. Kumar N, PRC Kent, DJ Wesolowski, JD Kubicki (2013) Modeling water adsorption on rutile (110) using Van Der Waals density functional and DFT + U methods department of mechanical and nuclear engineering, The Pennsylvania State University, Center for Nanophase Materials Sciences and Computer Science and Mathematics Division

    Google Scholar 

  36. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  ADS  Google Scholar 

  37. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  ADS  Google Scholar 

  38. Cheng J, Sprik M (2014) The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation. J Phys Condens Matter: Inst Phys J 26:244108

    Article  Google Scholar 

  39. Ohto T, Backus EHG, Mizukami W et al (2016) Unveiling the amphiphilic nature of TMAO by vibrational sum frequency generation spectroscopy. J Phys Chem C 120:17435

    Article  Google Scholar 

  40. Nagata Y, Ohto T, Backus EHG, Bonn M (2016) Molecular modeling of water interfaces: from molecular spectroscopy to thermodynamics. J Phys Chem B 120:3785–3796

    Article  Google Scholar 

  41. Calegari Andrade MF, Ko HY, Car R, Selloni A (2018) Structure, polarization, and sum frequency generation spectrum of interfacial water on anatase TiO2. J Phys Chem Lett 9:6716–6721

    Article  Google Scholar 

  42. Předota M, Zhang Z, Fenter P et al (2004) Electric double layer at the rutile (110) surface. 2. Adsorption of ions from molecular dynamics and X-ray experiments. J Phys Chem B 108:12061–12072

    Article  Google Scholar 

  43. Nagata Y, Pool RE, Backus EHG, Bonn M (2012) Nuclear quantum effects affect bond orientation of water at the water-vapor interface. Phys Rev Lett 109:226101

    Article  ADS  Google Scholar 

  44. Belhadj H, Hakki A, Robertson PKJ, Bahnemann DW (2015) In situ ATR-FTIR study of H2O and D2O adsorption on TiO2 under UV irradiation. Phys Chem Chem Phys 17:22940–22946

    Article  Google Scholar 

  45. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol, C 1:1–21

    Article  Google Scholar 

  46. Wang CY, Groenzin H, Shultz MJ (2003) Molecular species on nanoparticulate anatase TiO2 film detected by sum frequency generation: trace hydrocarbons and hydroxyl groups. Langmuir 19:7330–7334

    Article  Google Scholar 

  47. Nakamura R, Ueda K, Sato S (2001) In situ observation of the photoenhanced adsorption of water on TiO2 films by surface-enhanced IR absorption spectroscopy. Langmuir 17:2298–2300

    Article  Google Scholar 

  48. Zubkov T, Stahl D, Thompson TL et al (2005) Ultraviolet light-induced hydrophilicity effect on TiO2 (110)(1 × 1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. J Phys Chem B 109:15454–15462

    Article  Google Scholar 

  49. Perakis F, De Marco L, Shalit A et al (2016) Vibrational spectroscopy and dynamics of water. Chem Rev 116:7590–7607

    Article  Google Scholar 

  50. Hosseinpour S, Tang F, Wang F et al (2017) Chemisorbed and physisorbed water at the TiO2/water interface. J Phys Chem Lett 8:2195–2199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujie Tang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, F. (2019). Structure and Dynamics of Water-TiO2 Interface. In: Structures and Dynamics of Interfacial Water. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-8965-8_6

Download citation

Publish with us

Policies and ethics