Skip to main content

Precautions to Avoid Consequences Leading to Nanotoxification

  • Chapter
  • First Online:
Nanoparticles in Medicine

Abstract

It is a truthful saying that “prevention is better than cure.” In many cases, the amount of a compound determines whether it will serve as a medicine or a poison. The use of nanoparticles in the field of medicine has taken a giant leap in providing enormous advantages for diagnostics, theranostics, and treatment of chronic diseases such as cancer, benign-tumors, cardiovascular disease, and diabetes, because of the specific anomalous physicochemical properties of particles at the nanoscale level. But, at the same time, the noxious properties of nanomaterials—which arise from the very same specific anomalous properties attributed to their size, increased surface-to-volume ratio, shape, surface coating, surface charge, etc.—cannot be ignored. Because of their potential adverse effects on the living biosphere, there is growing concern about the toxic effects of nanocomposite materials. Therefore, evaluation of the toxic effects of nanoparticles represents an urgent need. The human body produces nanoparticles naturally inside its system—such as DNA, liposomes, and antigens—and many functional cellular organelles are of a nanosize. However, because of a lack of synergistic effects, engineered nanoparticles with a size and features mimicking those of biomolecules can sometimes initiate new mechanisms that cause injury by interacting with cells and organs, finally leading to toxification of biological systems. Green nanochemistry—and, thus, green nanoscience—can be considered an applicatory approach to green chemistry to develop safer nanotechnology. This chapter considers the consequences of nanomedicines leading to toxicological effects, so that preventive measures can be taken by practicing green nanoscience, i.e., analysis and applications of such nanomaterials fabricated in a biocompatible manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastas PT, Warner JC. Green chemistry: theory and practice. Oxford University Press: New York; 1998. p. 30.

    Google Scholar 

  • Balbus JM, Maynard AD, Colvin VL. Report: hazard assessment for nanoparticles-report from an interdisciplinary workshop. Environ Health Perspect. 2007;115:1654–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barua S, Yoo JW, Kolhar P, Wakankar A, Gokarn YR, Mitragotri S. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A. 2013;110:3270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisseau P, Loubaton B. Nanomedicine, nanotechnology in medicine. Comptes Rendus Phys. 2011;12:620–36.

    Article  CAS  Google Scholar 

  • Braakhuis HM, Gosens I, Krystek P, Boere JA, Cassee FR, Fokkens PH, Post JA, van Loveren H, Park MV. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol. 2014;11:49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V. Calcium and ROS-mediated activation of transcription factors and TNF-cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol. 2004;286:L344–53.

    Article  CAS  PubMed  Google Scholar 

  • Chen HT, Neerman MF, Parrish AR, Simanek EE. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc. 2004;126:10044–8.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V. The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002;15:213–20.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita. 2003;39:405–10.

    CAS  PubMed  Google Scholar 

  • Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect. 2001;109(suppl. 4):523–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA. Nanotoxicology. Occup Environ Med. 2004;61:727–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assuncao M, et al. Noble metal nanoparticles for biosensing applications. Sensors (Basel). 2012;12(12):1657–87. https://doi.org/10.3390/s120201657.

    Article  CAS  Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114:1172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmanuel R, Karuppiah C, Chen SM, Palanisamy S, Padmavathy S, Prakash P. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing methemoglobinaemia. J Hazard Mater. 2014;279:117–24.

    Article  CAS  PubMed  Google Scholar 

  • European Science Foundation. Nanomedicine—an ESF–European Medical Research Councils (EMRC) forward look report. Strasbourg Cedex: ESF; 2004.

    Google Scholar 

  • Feng ZV, Gunsolus IL, Qiu TA, Hurley KR, Nyberg LH, Frew H, Johnson KP, Vartanian AM, Jacob LM, Lohse SE, Torelli MD, Hamers RJ, Murphy CJ, Haynes CL. Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem Sci. 2015;6:5186–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferin J. Pulmonary retention and clearance of particles. Toxicol Lett. 2004;72:121–5.

    Article  Google Scholar 

  • Ferin J, Oberdörster G, Penney DP. Pulmonary retention of ultrafine and fone particles in rats. Am J Respir Cell Mol Biol. 1992;6:535–52.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garcia E, Andrieux K, Gil S, Kima HR, Le Doana T, Desmaele D, d’Angelo J, Taran F, Georgin D, Couvreur P. A methodology to study intracellular distribution of nanoparticles in brain endothelial cells. Int J Pharm. 2005;298:310–4.

    Article  CAS  PubMed  Google Scholar 

  • Gatti AM, Montanari S, Monari E, Gambarelli A, Capitani F, Parisini B. Detection of micro- and nano-sized biocompatible particles in the blood. J Mater Sci Mater Med. 2004;15:469–72.

    Article  CAS  PubMed  Google Scholar 

  • Ghodake G, Kim DY, Jo JH, Jang J, Lee DS. One-step green synthesis of gold nanoparticles using casein hydrolytic peptides and their anti-cancer assessment using the DU145 cell line. J Ind Eng Chem. 2016;33:1–6.

    Article  Google Scholar 

  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorka DE, Osterberg JS, Gwin CA, Colman BP, Meyer JN, Bernhardt ES, Gunsch CK, DiGulio RT, Liu J. Reducing environmental toxicity of silver nanoparticles through shape control. Environ Sci Technol. 2015;49:10093–8.

    Article  CAS  PubMed  Google Scholar 

  • Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105:11613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurr JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213:66–73.

    Article  CAS  PubMed  Google Scholar 

  • Hoet PHM, Bruske-Hohlfeld I, Salata OV. Nanoparticles—known and unknown health risks. J Nanobiotechnology. 2004;2:12–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopwood D, Spiers EM, Ross PE, Anderson JT, McCullough JB, Murray FE. Endocytosis of fluorescent microspheres by human oesophageal epithelial cells: comparison between normal and inflamed tissue. Gut. 1995;37:598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao IL, Huang YJ. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ. 2011;409:1219–28.

    Article  CAS  PubMed  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38(4):545–60.

    Article  CAS  PubMed  Google Scholar 

  • Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol. 1990;42:821–6.

    Article  CAS  PubMed  Google Scholar 

  • Kaur IP, Kakkar V, Deol PK, Yadav M, Singh M, Sharma I. Issues and concerns in nanotech product development and its commercialization. J Control Release. 2014;193:51–62.

    Article  CAS  PubMed  Google Scholar 

  • Kohli AK, Alpar HO. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm. 2004;275:13–7.

    Article  CAS  PubMed  Google Scholar 

  • Konan YN, Chevallier J, Gurny R, Allémann E. Encapsulation of p-THPP into nanoparticles: cellular uptake, subcellular localization and effect of serum on photodynamic activity. Photochem Photobiol. 2003;77:638–44.

    Article  CAS  PubMed  Google Scholar 

  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health. 2002;65(Part A):1513–30.

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler M, Möller W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med. 2004;17:140–52.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn M, Ivleva NP, Klitzke S, Niessner R, Baumann T. Investigation of coatings of natural organic matter on silver nanoparticles under environmentally relevant conditions by surface enhanced Raman scattering. Sci Total Environ. 2015;535:122–30.

    Article  PubMed  Google Scholar 

  • Kumar S, Lather V, Pandita D. Green synthesis of therapeutic nanoparticles: an expanding horizon. Nanomedicine (Lond). 2015;10:2451–71.

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126–34.

    Article  CAS  PubMed  Google Scholar 

  • LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21:1184–91.

    Article  CAS  PubMed  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003;111:455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Zhang X, Pu Y, Yin L, Li Y, Zhang X, Liang G, Li X, Zhang J. Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. J Nanosci Nanotechnol. 2010;10:5161–9.

    Article  CAS  PubMed  Google Scholar 

  • Lockman PR, Koziara JM, Roder KE, Paulson J, Abbruscato TJ, Mumper RJ, Allen DD. In vivo and in vitro assessment of baseline blood-brain-barrier parameters in the presence of novel nanoparticles. Pharm Res. 2003;20:705–13.

    Article  CAS  PubMed  Google Scholar 

  • Loo C, Lin A, Hirsch L, Lee MH, Barton J, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat. 2004;3:33–40.

    Article  CAS  PubMed  Google Scholar 

  • Mashwani ZU, Khan T, Khan MA, Nadhman A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl Microbiol Biotechnol. 2015;99:9923–34.

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heiliea JF, Delos M, Arras M, Fonseca A, Nagyb JB, Lison D. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207:221–31.

    Article  CAS  PubMed  Google Scholar 

  • Nath D, Banerjee P. Green nanotechnology—a new hope for medical biology. Environ Toxicol Pharmacol. 2013;36:997–101.

    Article  CAS  PubMed  Google Scholar 

  • National Institutes of Health. National Institute of Health roadmap for medical research: nanomedicine. 2006. http://nihroadmap.nih.gov/nanomedicine/. Accessed 15 May 2006.

  • Nemmar A, Hoylaerts MF, Hoet PHM, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B. Ultrafine particles affect experimental thrombosis in an vivo hamster model. Am J Respir Crit Care Med. 2002;166:998–1004.

    Article  PubMed  Google Scholar 

  • Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257–88.

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2001;74:1–8.

    Article  PubMed  Google Scholar 

  • Oberdörster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994;102(Suppl 5):173–9.

    PubMed  PubMed Central  Google Scholar 

  • Oberdörster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder ACP. Acute pulmonary effects of ultrafine particles in rats and mice. HEI research report 96, August. Health Effects Institute; 2000. www.healtheffects.org/pubs-research.htm.

  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437–45.

    Article  PubMed  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder ACP, Gelein R, Lunts A, Kreyling W, Cox C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health. 2002;65A:1531–43.

    Article  Google Scholar 

  • Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16:1217–26.

    Article  CAS  PubMed  Google Scholar 

  • Penn A, Murphy G, Barker S, Henk W, Penn L. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells. Environ Health Perspect. 2005;113:956–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, Reed W, Rothen-Rutishauer B, Schurch S, Schultz H. Translocation and potential neurological effects of fine and ultrafine particles. A critical update. Part Fibre Toxicol. 2006;3:13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E. Effects of nanoscaled particles on the endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med. 2004;15:321–5.

    Article  CAS  PubMed  Google Scholar 

  • Porter AE, Muller K, Skepper J, Midgley P, Welland M. Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater. 2006;2:409–19.

    Article  PubMed  Google Scholar 

  • Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophagfe chemotactic responses caused by two ultrafine particle types. Occup Environ Med. 2004;61:442–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35:583–92.

    Article  CAS  PubMed  Google Scholar 

  • Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol. 2006;40:4353–9.

    Article  CAS  PubMed  Google Scholar 

  • Saini P, Saha SK, Roy P, Chowdhury P, Sinha Babu SP. Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Exp Parasitol. 2015;160:39–48.

    Article  PubMed  Google Scholar 

  • Sanjay SS. Safe nano is green nano. In: Shukla AK, Iravani S, editors. Green synthesis, characterization and applications of nanoparticles. Amsterdam: Elsevier; 2019. p. 27–36.

    Chapter  Google Scholar 

  • Schellenberger EA, Reynolds F, Weissleder R, Josephson L. Surface-functionalized nanoparticle library yields probes for apoptotic cells. Chembiochem. 2004;5:275–9.

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Shaw BJ, Handy RD. Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol. 2007;82:94–109.

    Article  CAS  PubMed  Google Scholar 

  • Soto KF, Carrasco A, Powell TG, Garza KM, Murr LE. Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res. 2005;7:145–69.

    Article  CAS  Google Scholar 

  • Stefani D, Wardman D, Lambert T. The implosion of the Calgary General Hospital: ambient air quality issues. J Air Waste Manag Assoc. 2005;55:52–9.

    Article  CAS  PubMed  Google Scholar 

  • S M, Getts D, Martin A, McCarthy D, Terry R, et al. Micro particles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol. 2012;30:1217–24.

    Article  Google Scholar 

  • Stone V, Shaw J, Brown DM, MacNee W, Faux SP, Donaldson K. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol In Vitro. 1998;12:649–59.

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 2001;109(Suppl. 4):547–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DG, et al. Nanoparticle ontology for cancer nanotechnology research. J Biomed Inform. 2011;44(1):59–74.

    Article  PubMed  Google Scholar 

  • Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem. 2012;31(8):1679–92. https://doi.org/10.1002/etc.1880.

    Article  CAS  PubMed  Google Scholar 

  • Vinothkannan M, Karthikeyan C, Gnanakumar G, Kim AR, Yoo DJ. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136(Pt B):256–64.

    Article  CAS  PubMed  Google Scholar 

  • Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63(1):185–98. https://doi.org/10.1146/annurev-med-040210-162544.

    Article  CAS  PubMed  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. Comparative toxicity assessment of single wall carbon nanotubes in rats. Toxicol Sci. 2004;77:117–25.

    Article  CAS  PubMed  Google Scholar 

  • Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol. 2002;184:172–9.

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–807.

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Chen C, Wang L, Zhang D, Li AJ, Yao Z, Shi LY. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic. Carbohydr Polym. 2016;140:66–73.

    Article  CAS  PubMed  Google Scholar 

  • Yong SK, Shrivastava M, Srivastava P, Kunhikrishnan A, Bolan N. Environmental applications of chitosan and its derivatives. Rev Environ Contam Toxicol. 2015;233:1–43.

    CAS  PubMed  Google Scholar 

  • Zhao X, Cui H, Chen W, Wang Y, Cui B, Sun C, Meng Z, Liu G. Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One. 2014;9(6):e98919.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005;23:1294–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanjay, S.S. (2020). Precautions to Avoid Consequences Leading to Nanotoxification. In: Shukla, A. (eds) Nanoparticles in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-8954-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8954-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8953-5

  • Online ISBN: 978-981-13-8954-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics