Skip to main content

Reconstruction, Optimization and Quality Check of Microsoft HoloLens-Acquired 3D Point Clouds

  • Chapter
  • First Online:
Neural Approaches to Dynamics of Signal Exchanges

Abstract

In the context of three-dimensional acquisition and elaboration, it is essential to maintain a balanced approach between model accuracy and required resources.  As a possible solution to this problem, the present paper proposes a method to obtain accurate and lightweight meshes of a real environment using the Microsoft® HoloLens as a device for point clouds acquisition.  Firstly, we describe an empirical procedure to improve 3D models, with the use of optimal parameters found by means of a genetic algorithm.  Then, a systematic review of the indexes for evaluating the quality of meshes is developed, in order to quantify and compare the goodness of the obtained outputs.  Finally, in order to check the quality of the proposed approach,  a reconstructed model is tested in a virtual scenario implemented in Unity® 3D Game Engine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Tommaso, M., Ricci, K., Delussi, M., Montemurno, A., Vecchio, E., Brunetti, A., Bevilacqua, V.: Testing a novel method for improving wayfinding by means of a p3b virtual reality visual paradigm in normal aging. Springerplus 5(1), 1297 (2016)

    Article  Google Scholar 

  2. Bevilacqua, V., Trotta, G.F., Brunetti, A., Buonamassa, G., Bruni, M., Delfine, G., Riezzo, M., Amodio, M., Bellantuono, G., Magaletti, D., Verrino, L., Guerriero, A.: Photogrammetric meshes and 3d points cloud reconstruction: a genetic algorithm optimization procedure. In: Rossi, F., Piotto, S., Concilio, S. (eds.) Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry, pp. 65–76. Springer International Publishing, Berlin (2017)

    Chapter  Google Scholar 

  3. Voulodimos, A., Doulamis, N., Fritsch, D., Makantasis, K., Doulamis, A., Klein, M.: Four-dimensional reconstruction of cultural heritage sites based on photogrammetry and clustering. J. Electron. Imaging 26(1), 011013 (2016)

    Article  Google Scholar 

  4. Zhang, H.: Head-mounted display-based intuitive virtual reality training system for the mining industry. Int. J. Mining Sci. Technol. 27(4), 717–722 (2017)

    Article  Google Scholar 

  5. Uva, A.E., Fiorentino, M., Gattullo, M., Colaprico, M., de Ruvo, M.F., Marino, F., Trotta, G.F., Manghisi, V.M., Boccaccio, A., Bevilacqua, V., Monno, G.: Design of a projective ar workbench for manual working stations. In: De Paolis, L.T., Mongelli, A. (eds.) Augmented Reality, Virtual Reality, and Computer Graphics, pp. 358–367. Springer International Publishing, Berlin (2016)

    Chapter  Google Scholar 

  6. Bevilacqua, V., Mastronardi, G., Menolascina, F., Pannarale, P., Pedone, A.: A novel multi-objective genetic algorithm approach to artificial neural network topology optimisation: the breast cancer classification problem. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 1958–1965. IEEE (2006)

    Google Scholar 

  7. Bevilacqua, V., Ivona, F., Cafarchia, D., Marino, F.: An evolutionary optimization method for parameter search in 3d points cloud reconstruction. In: Huang, D.-S., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds.) Intelligent Computing Theories, pp. 601–611. Springer, Berlin (2013)

    Chapter  Google Scholar 

  8. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: Measuring errors between surfaces using the hausdorff distance. In: 2002 IEEE International Conference on Multimedia and Expo (ICME’02), vol. 1, pp. 705–708. IEEE (2002)

    Google Scholar 

  9. Garon, M., Boulet, P.-O., Doironz, J.-P., Beaulieu, L., Lalonde, J.-F.: Real-time high resolution 3d data on the hololens. In: 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 189–191. IEEE (2016)

    Google Scholar 

  10. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, pp. 129–136 (2008)

    Google Scholar 

  11. Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21(3), 24–35 (2001)

    Article  Google Scholar 

  12. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. (TOG) 32(3), 29 (2013)

    Article  Google Scholar 

  13. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. In: Computer Graphics Forum, vol. 17, pp. 167–174. Blackwell Publishers (1998)

    Google Scholar 

  14. Dyn, N., Levine, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9(2), 160–169 (1990). April

    Google Scholar 

  15. Argelaguet, F., Andujar, C.: A survey of 3d object selection techniques for virtual environments. Comput. Graph. 37(3), 121–136 (2013)

    Article  Google Scholar 

  16. Vollmer, J., Mencl, R., Muller, H.: Improved laplacian smoothing of noisy surface meshes. Comput. Graph. Forum (1999)

    Google Scholar 

  17. OptiStruct User’s Guide Hyperworks. 13.0. User Manual, Altair Engineering Inc., Troy MI (2014)

    Google Scholar 

  18. Paul Chew, L.: Guaranteed-quality triangular meshes. Technical report, Cornell University (1989)

    Google Scholar 

  19. Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. Technical report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science (1997)

    Google Scholar 

  20. Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., Puppo, E.: Practical quad mesh simplification. Comput. Graphics Forum 29(2), 200 (Special Issue of Eurographics 2010 Conference)

    Article  Google Scholar 

  21. Cui, X., Shi, H.: An overview of pathfinding in navigation mesh. IJCSNS 12(12), 48–51 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitoantonio Bevilacqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trotta, G.F., Mazzola, S., Gelardi, G., Brunetti, A., Marino, N., Bevilacqua, V. (2020). Reconstruction, Optimization and Quality Check of Microsoft HoloLens-Acquired 3D Point Clouds. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_9

Download citation

Publish with us

Policies and ethics