Skip to main content

Effect of Sensor Density on eLORETA Source Localization Accuracy

  • Chapter
  • First Online:
Book cover Neural Approaches to Dynamics of Signal Exchanges

Abstract

The EEG source localization is an interesting area of research because it provides a better understanding of brain physiology and pathologies. The source localization accuracy depends on the head model, the technique for solving the inverse problem, and the number of electrodes used for detecting the EEG. The purpose of this study is to examine the localization accuracy of the eLORETA method applied to high-density EEGs (HDEEGs). Starting from the 256-channel EEGs, three different configurations were extracted. They consist of 18, 64, and 173 electrodes. The comparison of the results obtained from the different configurations shows that an increasing number of electrodes improve eLORETA source localization accuracy. It is also proved that a few number of electrodes could be not sufficient to detect all active sources. Finally, some sources resulting significant when few electrodes are used could turn out to be less significant when EEG is detected by a greater number of sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, G., Ren, D.: Effect of brain-to-skull conductivity ratio on EEG source localization accuracy. In: BioMed Research International 2013 (2013)

    Google Scholar 

  2. Jatoi, M.A., Kamel, N., Malik, A.S., Faye, I., Begum, T.: A survey of methods used for source localization using EEG signals. Biomed. Sig. Process. Control 11, 42–52 (2014)

    Article  Google Scholar 

  3. Hämäläinen, M.S., Ilmoniemi, R.J.: Interpreting Measured Magnetic Fields of the Brain: Estimates of Current Distributions. Helsinki University of Technology, Department of Technical Physics, Espoo (1984)

    Google Scholar 

  4. Pascual-Marqui, R.D., Michel, C.M., Lehmann, D.: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18(1), 49–65 (1994)

    Article  Google Scholar 

  5. Pascual-Marqui, R.D.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl D), 5–12 (2002)

    Google Scholar 

  6. Dale, A.M., Liu, A.K., Fischl, B.R., Buckner, R.L., Belliveau, J.W., Lewine, J.D., Halgren, E.: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26(1), 55–67 (2000)

    Article  Google Scholar 

  7. Pascual-Marqui, R.D.: Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv preprint arXiv:0710.3341 (2007)

  8. Jatoi, M.A., Kamel, N., Malik, A.S., Faye, I.: EEG based brain source localization comparison of sLORETA and eLORETA. Australas. Phys. Eng. Sci. Med. 37(4), 713–721 (2014)

    Article  Google Scholar 

  9. Mulert, C., Jäger, L., Schmitt, R., Bussfeld, P., Pogarell, O., Möller, H.J., et al.: Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22(1), 83–94 (2004)

    Article  Google Scholar 

  10. Vitacco, D., Brandeis, D., Pascual-Marqui, R., Martin, E.: Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum. Brain Mapp. 17(1), 4–12 (2002)

    Article  Google Scholar 

  11. Rossini, P.M., Del Percio, C., Pasqualetti, P., Cassetta, E., Binetti, G., Dal Forno, G., et al.: Conversion from mild cognitive impairment to Alzheimer’s disease is predicted by sources and coherence of brain electroencephalography rhythms. Neuroscience 143(3), 793–803 (2006)

    Article  Google Scholar 

  12. Gianotti, L.R., Künig, G., Lehmann, D., Faber, P.L., Pascual-Marqui, R.D., Kochi, K., Schreiter-Gasser, U.: Correlation between disease severity and brain electric LORETA tomography in Alzheimer’s disease. Clin. Neurophysiol. 118(1), 186–196 (2007)

    Article  Google Scholar 

  13. Babiloni, C., Frisoni, G.B., Pievani, M., Toscano, L., Del Percio, C., Geroldi, C., et al.: White-matter vascular lesions correlate with alpha EEG sources in mild cognitive impairment. Neuropsychologia 46(6), 1707–1720 (2008)

    Article  Google Scholar 

  14. Worrell, G.A., Lagerlund, T.D., Sharbrough, F.W., Brinkmann, B.H., Busacker, N.E., Cicora, K.M., O’brien, T.J.: Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain topography, 12(4), 273–282 (2000)

    Google Scholar 

  15. Clemens, B., Bessenyei, M., Fekete, I., Puskás, S., Kondákor, I., Tóth, M., Hollódy, K.: Theta EEG source localization using LORETA in partial epilepsy patients with and without medication. Clin. Neurophysiol. 121(6), 848–858 (2010)

    Article  Google Scholar 

  16. Spitzer, A.R., Cohen, L.G., Fabrikant, J., Hallett, M.: A method for determining optimal interelectrode spacing for cerebral topographic mapping. Electroencephalogr. Clin. Neurophysiol. 72(4), 355–361 (1989)

    Article  Google Scholar 

  17. Tucker, D.M.: Spatial sampling of head electrical fields: the geodesic sensor net. Electroencephalogr. Clin. Neurophysiol. 87(3), 154–163 (1993)

    Article  Google Scholar 

  18. Freeman, W.J., Holmes, M.D., Burke, B.C., Vanhatalo, S.: Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 114(6), 1053–1068 (2003)

    Article  Google Scholar 

  19. Srinivasan, R., Tucker, D.M., Murias, M.: Estimating the spatial Nyquist of the human EEG. Behav. Res. Methods 30(1), 8–19 (1998)

    Article  Google Scholar 

  20. Sohrabpour, A., Lu, Y., Kankirawatana, P., Blount, J., Kim, H., He, B.: Effect of EEG electrode number on epileptic source localization in pediatric patients. Clin. Neurophysiol. 126(3), 472–480 (2015)

    Article  Google Scholar 

  21. Song, J., Davey, C., Poulsen, C., Luu, P., Turovets, S., Anderson, E., et al.: EEG source localization: sensor density and head surface coverage. J. Neurosci. Meth. 256, 9–21 (2015)

    Article  Google Scholar 

  22. Tong, S., Thakor, N.V.: Quantitative EEG Analysis Methods and Clinical Applications. Artech House, Norwood (2009)

    Google Scholar 

  23. Jasper, H.H.: The ten twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophsiol. 10, 371–375 (1958)

    Google Scholar 

  24. Chatrian, G.E., Lettich, E., Nelson, P.L.: Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. American Journal of EEG Technology 25(2), 83–92 (1985)

    Article  Google Scholar 

  25. Jurcak, V., Tsuzuki, D., Dan, I.: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34(4), 1600–1611 (2007)

    Article  Google Scholar 

  26. Oostenveld, R., Praamstra, P.: The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 112(4), 713–719 (2001)

    Article  Google Scholar 

  27. Electrical Geodesics, I.: Geodesic sensor net technical manual. Electrical Geodesics, Inc (2007)

    Google Scholar 

  28. Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silberstein, R.B., Cadusch, P.J.: EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr. Clin. Neurophysiol. 103(5), 499–515 (1997)

    Article  Google Scholar 

  29. Luu, P., Ferree, T.: Determination of the HydroCel Geodesic Sensor Nets’ average electrode positions and their 10-10 international equivalents. Inc, Technical Note (2005)

    Google Scholar 

  30. Yang, L., et al.: Dynamic imaging of ictal oscillations using non-invasive high-resolution EEG. Neuroimage 56(4), 1908–1917 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The present work was funded by the Italian Ministry of Health, Project Code GR-2011-02351397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Dattola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dattola, S. et al. (2020). Effect of Sensor Density on eLORETA Source Localization Accuracy. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_36

Download citation

Publish with us

Policies and ethics