Skip to main content

Evaluation of a Support Vector Machine Based Method for Crohn’s Disease Classification

  • Chapter
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 151))

Abstract

Crohn’s disease (CD) is a chronic, disabling inflammatory bowel disease that affects millions of people worldwide. CD diagnosis is a challenging issue that involves a combination of radiological, endoscopic, histological, and laboratory investigations. Medical imaging plays an important role in the clinical evaluation of CD. Enterography magnetic resonance imaging (E-MRI) has been proven to be a useful diagnostic tool for disease activity assessment. However, the manual classification process by expert radiologists is time-consuming and expensive. This paper proposes the evaluation of an automatic Support Vector Machine (SVM) based supervised learning method for CD classification. A real E-MRI dataset composed of 800 patients from the University of Palermo Policlinico Hospital (400 patients with histologically proved CD and 400 healthy patients) has been used to evaluate the proposed classification technique. For each patient, a team of radiology experts has extracted a vector composed of 20 features, usually associated with CD, from the related E-MRI examination, while the histological specimen results have been used as the ground-truth for CD diagnosis. The dataset composed of 800 vectors has been used to train and validate the SVM classifier. Automatic techniques for feature space reduction have been applied and validated by the radiologists to optimize the proposed classification method, while K-fold cross-validation has been used to improve the SVM classifier reliability. The measured indexes (sensitivity: 97.07%, specificity: 96.04%, negative predictive value: 97.24%, precision: 95.80%, accuracy: 96.54%, error: 3.46%) are better than the operator-based reference values reported in the literature. Experimental results also show that the proposed method outperforms the main standard classification techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bhatnagar, G., Stempel, C., Halligan, S., Taylor, S.A.: Utility of MR enterography and ultrasound for the investigation of small bowel CD. J. Magn. Reson. Imaging 45, 1573–1588 (2016)

    Article  Google Scholar 

  2. Lo Re, G., Midiri, M.: Crohn’s disease: radiological features and clinical-surgical correlations. Springer, Heidelberg (2016)

    Book  Google Scholar 

  3. Maglinte, D.D., Gourtsoyiannis, N., Rex, D., Howard, T.J., Kelvin, F.M.: Classification of small bowel Crohn’s subtypes based on multimodality imaging. Radiol. Clin. North Am. 41(2), 285–303 (2003)

    Article  Google Scholar 

  4. Gomollón, F., Dignass, A., Annese, V., Tilg, H., Van Assche, G., Lindsay, J.O., Peyrin-Biroulet, L., Cullen, G.J., Daperno, M., Kucharzik, T., et al.: 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J. Crohns Colitis 11, 3–25 (2016)

    Article  Google Scholar 

  5. Sinha, R., Verma, R., Verma, S., Rajesh, A.: Mr enterography of Crohn disease: part 1, rationale, technique, and pitfalls. Am. J. Roentgenol. 197(1), 76–79 (2011)

    Article  Google Scholar 

  6. Peloquin, J.M., Pardi, D.S., Sandborn, W.J., Fletcher, J.G., McCollough, C.H., Schueler, B.A., Kofler, J.A., Enders, F.T., Achenbach, S.J., Loftus, E.V.: Diagnostic ionizing radiation exposure in a population-based cohort of patients with inflammatory bowel disease. Am. J. Gastroenterol. 103(8), 2015–2022 (2008)

    Article  Google Scholar 

  7. Lo Re, G., Cappello, M., Tudisca, C., Galia, M., Randazzo, C., Craxì, A., Camma, C., Giovagnoni, A., Midiri, M.: CT enterography as a powerful tool for the evaluation of inflammatory activity in Crohn’s disease: relationship of CT findings with CDAI and acute-phase reactants. Radiol. Med. (Torino) 119(9), 658–666 (2014)

    Article  Google Scholar 

  8. Steward, M.J., Punwani, S., Proctor, I., Adjei-Gyamfi, Y., Chatterjee, F., Bloom, S., Novelli, M., Halligan, S., Rodriguez-Justo, M., Taylor, S.A.: Non-perforating small bowel CD assessed by MRI enterography: derivation and histopathological validation of an MR-based activity index. Eur. J. Radiol. 81(9), 2080–2088 (2012)

    Article  Google Scholar 

  9. Panes, J., Bouzas, R., Chaparro, M., García-Sánchez, V., Gisbert, J., Martinez de Guereñu, B., Mendoza, J.L., Paredes, J.M., Quiroga, S., Ripollés, T., et al.: Systematic review: the use of ultrasonography, computed tomography and magnetic resonance imaging for the diagnosis, assessment of activity and abdominal complications of Crohn’s disease. Aliment. Pharmacol. Ther. 34(2), 125–145 (2011)

    Article  Google Scholar 

  10. Sinha, R., Verma, R., Verma, S., Rajesh, A.: Mr enterography of Crohn disease: part 2, imaging and pathologic findings. Am. J. Roentgenol. 197(1), 80–85 (2011)

    Article  Google Scholar 

  11. Tolan, D.J., Greenhalgh, R., Zealley, I.A., Halligan, S., Taylor, S.A.: Mr enterographic manifestations of small bowel Crohn disease 1. Radiographics 30(2), 367–384 (2010)

    Article  Google Scholar 

  12. Cocosco, C.A., Zijdenbos, A.P., Evans, A.C.: A fully automatic and robust brain MRI tissue classification method. Med. Image Anal. 7(4), 513–527 (2003)

    Article  Google Scholar 

  13. Chaplot, S., Patnaik, L., Jagannathan, N.: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. Control 1(1), 86–92 (2006)

    Article  Google Scholar 

  14. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26(2), 136–150 (2016)

    Article  Google Scholar 

  15. Son, Y.J., Kim, H.G., Kim, E.H., Choi, S., Lee, S.K.: Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc. Inform. Res. 16(4), 253–259 (2010)

    Article  Google Scholar 

  16. Zhang, Y., Wang, S., Ji, G., Dong, Z.: An MR brain images classifier system via particle swarm optimization and Kernel support vector machine. Sci. World J. 2013, 9 (2013)

    Google Scholar 

  17. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

    Google Scholar 

  18. Comelli, A., Terranova, M. C., Scopelliti, L., Salerno, S., Midiri, F., Lo Re, G., Petrucci, G., Vitabile, S.: A kernel support vector machine based technique for Crohn’s disease classification in human patients. In: Barolli, L., Terzo, O. (eds.) Complex, Intelligent, and Software Intensive Systems. CISIS 2017. Advances in Intelligent Systems and Computing, vol 611. Springer, Cham (2018)

    Google Scholar 

  19. Jain, A., Zongker, D.: Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997)

    Article  Google Scholar 

  20. Christianini, N., Shawe-Taylor, J.C.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, UK (2000)

    Book  Google Scholar 

  21. Scholkopf, B., Smola, A.: Learning with kernels: support vector machines, regularization, optimization and beyond, adaptive computation and machine learning. The MIT Press, Cambridge, MA (2002)

    Google Scholar 

  22. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Franchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franchini, S., Terranova, M.C., Lo Re, G., Salerno, S., Midiri, M., Vitabile, S. (2020). Evaluation of a Support Vector Machine Based Method for Crohn’s Disease Classification. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_29

Download citation

Publish with us

Policies and ethics