Skip to main content

Infinite Brain MR Images: PGGAN-Based Data Augmentation for Tumor Detection

  • Chapter
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 151))

Abstract

Due to the lack of available annotated medical images, accurate computer-assisted diagnosis requires intensive data augmentation (DA) techniques, such as geometric/intensity transformations of original images; however, those transformed images intrinsically have a similar distribution to the original ones, leading to limited performance improvement. To fill the data lack in the real image distribution, we synthesize brain contrast-enhanced magnetic resonance (MR) images—realistic but completely different from the original ones—using generative adversarial networks (GANs). This study exploits progressive growing of GANs (PGGANs), a multistage generative training method, to generate original-sized \(256\times 256\) MR images for convolutional neural network-based brain tumor detection, which is challenging via conventional GANs; difficulties arise due to unstable GAN training with high resolution and a variety of tumors in size, location, shape, and contrast. Our preliminary results show that this novel PGGAN-based DA method can achieve a promising performance improvement, when combined with classical DA, in tumor detection and also in other medical imaging tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rundo, L., Militello, C., Russo, G., Vitabile, S., Gilardi, M.C., Mauri, G.: GTVcut for neuro-radiosurgery treatment planning: an MRI brain cancer seeded image segmentation method based on a cellular automata model. Nat. Comput. 17(3), 521–536 (2018)

    Article  MathSciNet  Google Scholar 

  2. Rundo, L., Militello, C., Vitabile, S., Russo, G., Pisciotta, P., Marletta, F., Ippolito, M., DArrigo, C., Midiri, M., Gilardi, M.C.: Semi-automatic brain lesion segmentation in Gamma Knife treatments using an unsupervised fuzzy c-means clustering technique. In: Advances in Neural Networks: Computational Intelligence for ICT. Volume 54 of Smart Innovation, Systems and Technologies, pp. 15–26. Springer (2016)

    Google Scholar 

  3. Bevilacqua, V., Brunetti, A., Cascarano, G.D., Palmieri, F., Guerriero, A., Moschetta, M.: A deep learning approach for the automatic detection and segmentation in autosomal dominant polycystic kidney disease based on Magnetic Resonance images. In: Proceedings of International Conference on Intelligent Computing (ICIP), pp. 643–649. Springer (2018)

    Google Scholar 

  4. Brunetti, A., Carnimeo, L., Trotta, G.F., Bevilacqua, V.: Computer-assisted frameworks for classification of liver, breast and blood neoplasias via neural networks: a survey based on medical images. Neurocomputing 335, 274–298 (2018)

    Article  Google Scholar 

  5. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  6. Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 234–241 (2015)

    Google Scholar 

  8. Milletari, F., Navab, N., Ahmadi, S.: V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  9. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2107–2116. IEEE (2017)

    Google Scholar 

  10. Costa, P., Galdran, A., Meyer, M.I., Niemeijer, M., Abràmoff, M., Mendona, A.M., Campilho, A.: End-to-end adversarial retinal image synthesis. IEEE Trans. Med. Imaging 37(3), 781–791 (2018)

    Article  Google Scholar 

  11. Chuquicusma, M.J.M., Hussein, S., Burt, J., Bagci, U.: How to fool radiologists with generative adversarial networks? a visual Turing test for lung cancer diagnosis. In: Proceedings of International Symposium on Biomedical Imaging (ISBI), pp. 240–244. IEEE (2018)

    Google Scholar 

  12. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)

    Article  Google Scholar 

  13. Han, C., Hayashi, H., Rundo, L., Araki, R., Shimoda, W., Muramatsu, S., et al.: GAN-based synthetic brain MR image generation. In: Proceedings of International Symposium on Biomedical Imaging (ISBI), pp. 734–738. IEEE (2018)

    Google Scholar 

  14. Militello, C., Rundo, L., Vitabile, S., et al.: Gamma knife treatment planning: MR brain tumor segmentation and volume measurement based on unsupervised fuzzy c-means clustering. Int. J. Imaging Syst. Technol. 25(3), 213–225 (2015)

    Article  Google Scholar 

  15. Rundo, L., Stefano, A., Militello, C., Russo, G., Sabini, M.G., D’Arrigo, C., Marletta, F., Ippolito, M., Mauri, G., Vitabile, S., Gilardi, M.C.: A fully automatic approach for multimodal PET and MR image segmentation in Gamma Knife treatment planning. Comput. Methods Programs Biomed. 144, 77–96 (2017)

    Article  Google Scholar 

  16. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of AAAI Conference on Artificial Intelligence (AAAI) (2017)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE (2016)

    Google Scholar 

  18. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: Proceedings of International Conference on Learning Representations (ICLR). arXiv preprint arXiv:1710.10196v3 (2018)

  19. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems (NIPS), pp. 2234–2242 (2016)

    Google Scholar 

  20. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)

    Google Scholar 

  21. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE (2017)

    Google Scholar 

  22. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5769–5779 (2017)

    Google Scholar 

  23. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of International Conference on Learning Representations (ICLR). arXiv preprint arXiv:1511.06434 (2016)

  24. Kwak, H., Zhang, B.: Generating images part by part with composite generative adversarial networks. arXiv preprint arXiv:1607.05387 (2016)

  25. Xue, Y., Xu, T., Zhang, H., Long, L.R., Huang, X.: SegAN: Adversarial network with multi-scale \({L}_{1}\) loss for medical image segmentation. Neuroinformatics 16(3–4), 383–392 (2018)

    Article  Google Scholar 

  26. Mahapatra, D., Bozorgtabar, B., Hewavitharanage, S., Garnavi, R.: Image super resolution using generative adversarial networks and local saliency maps for retinal image analysis. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 382–390 (2017)

    Chapter  Google Scholar 

  27. Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., Shen, D.: Medical image synthesis with context-aware generative adversarial networks. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 417–425 (2017)

    Chapter  Google Scholar 

  28. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  29. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  30. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Proceedings of International Conference on Information Processing in Medical Imaging (IPMI), pp. 146–157 (2017)

    Google Scholar 

  31. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 700–708 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Graduate Program for Social ICT Global Creative Leaders of the University of Tokyo by JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhee Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, C. et al. (2020). Infinite Brain MR Images: PGGAN-Based Data Augmentation for Tumor Detection. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_27

Download citation

Publish with us

Policies and ethics