Skip to main content

Dimension Reduction Techniques in a Brain–Computer Interface Application

  • Chapter
  • First Online:
Book cover Neural Approaches to Dynamics of Signal Exchanges

Abstract

Electroencephalography (EEG)-based Brain–computer interface (BCI) technology allows a user to control an external device without muscle intervention through recorded neural activity. Ongoing research on BCI systems includes applications in the medical field to assist subjects with impaired motor functionality (e.g., for the control of prosthetic devices). In this context, the accuracy and efficiency of a BCI system are of paramount importance. Comparing four different dimension reduction techniques in combination with linear and nonlinear classifiers, we show that integrating these methods in a BCI system results in a reduced model complexity without affecting overall accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sur, S., Sinha, V.K.: Event-related potential: an overview. Ind. Psychiatry J. 18(1), 70 (2009)

    Article  Google Scholar 

  2. Repovs, G.: Dealing with noise in EEG recording and data analysis. Informatica Medica Slovenica 15(1), 18–25 (2010)

    Google Scholar 

  3. McCane, L.M., et al.: P300-based brain-computer interface (BCI) eventrelated potentials (ERPs): people with amyotrophic lateral sclerosis (ALS) versus age-matched controls. Clin. Neurophysiol. 126(11), 2124–2131 (2015)

    Article  Google Scholar 

  4. da Silva-Sauer, L., et al.: Concentration on performance with P300- based BCI systems: a matter of interface features. Appl. Ergon. 52, 325–332 (2016)

    Article  Google Scholar 

  5. Polich, J.: Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118(10), 2128–2148 (2007)

    Article  Google Scholar 

  6. Brunner, P., et al.: Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG). Front. Neurosci. 5, 5 (2011)

    Article  Google Scholar 

  7. Hochberg, L.R., et al.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. In: Nature 485(7398), 372 (2012)

    Article  Google Scholar 

  8. Guy, V., et al.: Brain computer interface with the P300 speller: usability for disabled people with amyotrophic lateral sclerosis. Ann. Phys. Rehabil. Med. 61(1), 5–11 (2018)

    Article  Google Scholar 

  9. Wang, J., Liu, Y., Tang, J.: Fast robot arm control based on brain-computer interface. In: Information Technology, Networking, Electronic and Automation Control Conference, IEEE, pp. 571–575. IEEE (2016)

    Google Scholar 

  10. Speier, W., et al.: A comparison of stimulus types in online classification of the P300 speller using language models. PloS one 12(4), e0175382 (2017)

    Article  Google Scholar 

  11. Elsawy, A.S., et al.: A principal component analysis ensemble classifier for P300 speller applications. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 444–449. IEEE (2013)

    Google Scholar 

  12. Lotte, F., Guan, C.: An efficient P300-based brain-computer interface with minimal calibration time. In: Assistive Machine Learning for People with Disabilities Symposium (NIPS’09 Symposium) (2009)

    Google Scholar 

  13. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 37–49 (2012)

    Google Scholar 

  14. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 2579–2605 (2008)

    Google Scholar 

  15. Goldberger, J., et al.: Neighbourhood components analysis. Adv. Neural Inf. Process. Syst. 513–520 (2005)

    Google Scholar 

  16. Schalk, G., Mellinger, J.: A Practical Guide to Brain-Computer Interfacing with BCI2000: General-Purpose Software for Brain-Computer Interface Research. Data Acquisition, Stimulus Presentation, and Brain Monitoring. Springer (2010)

    Google Scholar 

  17. Siuly, S., Li, Y., Zhang, Y.: EEG Signal Analysis and Classification. Springer (2016)

    Google Scholar 

  18. Coefficient of Determination, Determination Coefficient, RSquared (2013). https://www.bci2000.org/mediawiki/index.php/Glossary. Visited on 06 Nov 2018

  19. Krusienski, D.J., et al.: A comparison of classification techniques for the P300 Speller. J. Neural Engi. 3(4), 299 (2006)

    Article  Google Scholar 

  20. Yamada, T., Meng, E.: Practical Guide for Clinical Neuro-Physiologic Testing: EEG. Lippincott Williams & Wilkins (2012)

    Google Scholar 

  21. Coyle, D.: Brain-Computer Interfaces: Lab Experiments to Real-world Applications, vol. 228. Elsevier (2016)

    Google Scholar 

  22. Filters in the Electroencephalogram (2015). https://clinicalgate.com/filters-in-the-electroencephalogram/. Visited on 06 Nov 2018

  23. Spataro, R., et al.: Reaching and grasping a glass of water by locked-In ALS patients through a BCI-controlled humanoid robot. Front. Hum. Neurosci. 11, 68 (2017)

    Google Scholar 

  24. Rakotomamonjy, A., Guigue, V.: BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans. Biomed. Eng. 55(3), 1147–1154 (2008)

    Article  Google Scholar 

  25. Alhaddad, M.J.: Common average reference (CAR) improves p300 speller. Int. J. Eng. Technol. 2(3), 21 (2012)

    Google Scholar 

  26. Lugo, Z.R., et al.: A vibrotactile p300-based brain-computer interface for consciousness detection and communication. Clin. EEG Neurosci. 45(1), 14–21 (2014)

    Article  Google Scholar 

  27. Sharma, N.: Single-trial P300 Classification using PCA with LDA, QDA and Neural Networks. arXiv preprint arXiv:1712.01977 (2017)

  28. Selim, A.E., Wahed, M.A., Kadah, Y.M.: Electrode reduction using ICA and PCA in P300 visual speller brain-computer interface system. In: 2014 Middle East Conference on Biomedical Engineering (MECBME), pp. 357–360. IEEE (2014)

    Google Scholar 

  29. Kundu, S., Ari, S.: P300 Detection with brain-computer interface application using PCA and ensemble of weighted SVMs. IETE J. Res. 1–9 (2017)

    Google Scholar 

  30. Jadidi A.F., Zargar, B.S., Moradi, M.S.: Categorizing visual objects; using ERP components. In: 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME), pp. 159–164. IEEE (2016)

    Google Scholar 

  31. Maaten, L.: Learning a parametric embedding by preserving local structure. Artif. Intell. Stat. 384–391 (2009)

    Google Scholar 

  32. Goodfellow, I., Bengio, Y., Courville, A. Deep Learning MIT Press (2016). http://www.deeplearningbook.org

  33. Vařeka, L., Mautner, P.: Stacked autoencoders for the P300 component detection. Front. Neurosci. 11, 302 (2017)

    Article  Google Scholar 

  34. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  35. McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition, vol. 544. Wiley (2004)

    Google Scholar 

  36. Shashua, A.: Introduction to machine learning: class notes 67577. arXiv preprint arXiv:0904.3664 (2009)

  37. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  38. Choudhry, M.S., et al.: A survey on different discrete wavelet transforms and thresholding techniques for EEG denoising. In: 2016 International Conference on Computing, Communication and Automation (ICCCA), , pp. 1048–1053. IEEE (2016)

    Google Scholar 

  39. Krishnaveni, V., et al.: Automatic identification and removal of ocular artifacts from EEG using wavelet transform. Measur. Sci. Rev. 6(4), 45–57 (2006)

    Google Scholar 

  40. Radüntz, T., et al.: EEG artifact elimination by extraction of ICA-component features using image processing algorithms. J. Neurosci. Methods 243, 84–93 (2015)

    Article  Google Scholar 

  41. Winkler, I., Haufe, S., Tangermann, M.: Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Functions 7(1), 30 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Tagliaferri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cozza, F., Galdi, P., Serra, A., Pasqua, G., Pavone, L., Tagliaferri, R. (2020). Dimension Reduction Techniques in a Brain–Computer Interface Application. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_11

Download citation

Publish with us

Policies and ethics