Skip to main content

Myocardial Oxidative Stress and Metabolic Diseases

  • Chapter
  • First Online:
  • 354 Accesses

Abstract

Aging, diabetes, obesity, atherosclerosis, hypertension, and dyslipidemia shared similar manifestations of cardiomyopathy. This disease is characterized by pathological, cytological, and molecular alterations of both cardiomyocytes and endothelial cells. The disease altered the cytoplasmic organelle structure and function such as mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. These involved dramatic changes of protein synthesis in endoplasmic reticulum, calcium storage in mitochondria, autophagy in lysosomes, and lipid metabolism in Golgi complex. Enhanced lipid peroxidation, oxidative stress, and release of free oxygen species are the main contributing factors of cell damage and cell death. This review summarized the concept of oxidative stress in cardiomyocytes and role of each cytoplasmic organelle in its development during progress of the disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Misra MK, Sarwat M, Bhakuni P et al (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15(10):RA209–RA219

    CAS  PubMed  Google Scholar 

  2. Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81(3):449–456

    CAS  Google Scholar 

  3. Obas V, Vasan RS (2018) The aging heart. Clin Sci (Lond) 132(13):1367–1382

    CAS  Google Scholar 

  4. Mayyas F, Alzoubi KH, Al-Taleb Z (2017) Impact of high fat/high salt diet on myocardial oxidative stress. Clin Exp Hypertens 39(2):126–132

    CAS  PubMed  Google Scholar 

  5. Brito R, Castillo G, González J et al (2015) Oxidative stress in hypertension: mechanisms and therapeutic opportunities. Exp Clin Endocrinol Diabetes 123(6):325–335

    CAS  PubMed  Google Scholar 

  6. Zhao MX, Zhou B, Ling L et al (2017) Salusin-β contributes to oxidative stress and inflammation in diabetic cardiomyopathy. Cell Death Dis 8(3):e2690

    CAS  PubMed  PubMed Central  Google Scholar 

  7. World Health Organization (WHO) (2011) and C. D. Bode, Media Centre-Fact Sheets, Diabetes. http://www.who.int/mediacentre/factsheets/fs312/en/index

  8. Pasqualini FS, Nesmith AP, Horton RE et al (2016) Mechanotransduction and metabolism in Cardiomyocyte microdomains. Biomed Res Int 2016:4081638

    PubMed  PubMed Central  Google Scholar 

  9. Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL et al (2009) Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 89(4):1217–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Varma U, Koutsifeli P, Benson VL et al (2018). Molecular mechanisms of cardiac pathology in diabetes – experimental insights Biochim Biophys Acta 1864(5 Pt B):1949–1959

    CAS  Google Scholar 

  11. Shum M, Bellmann K, St-Pierre P et al (2016) Pharmacological inhibition of S6K1 increases glucose metabolism and Akt signalling in vitro and in diet-induced obese mice. Diabetologia 59:592–603

    CAS  PubMed  Google Scholar 

  12. Mellor KM, Brimble MA, Delbridge LM (2015) Glucose as an agent of post-translational modification in diabetes—new cardiac epigenetic insights. Life Sci 129:48–53

    CAS  PubMed  Google Scholar 

  13. McLarty JL, Marsh SA, Chatham JC (2013) Post-translational protein modification by O-linked N-acetyl-glucosamine: its role in mediating the adverse effects of diabetes on the heart. Life Sci 92:621–627

    CAS  PubMed  Google Scholar 

  14. Pereira L, Ruiz-Hurtado G, Rueda A et al (2010) Mitochondrial fission and autophagy in the normal and diseased heart. Curr Hypertens Rep 12(6):418–425

    Google Scholar 

  15. Mishra PK, Ying W, Nandi SS et al (2017) Diabetic cardiomyopathy: an immunometabolic perspective. Front Endocrinol (Lausanne) 8:72. https://doi.org/10.3389/fendo.2017.00072

    Article  Google Scholar 

  16. Basha B, Samuel SM, Triggle CR et al (2012). Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress?. Exp Diab Res Article ID 481840, 14 pages. https://doi.org/10.1155/2012/481840

    Google Scholar 

  17. Calles-Escandon J, Cipolla M (2001) Diabetes and endothelial dysfunction: a clinical perspective. End Rev 22(1):36–52

    CAS  Google Scholar 

  18. Bohm F, Pernow J (2007) The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res 76(1):8–18

    PubMed  Google Scholar 

  19. Yu L, Li S, Tang X et al (2017a) Diallyl trisulfide ameliorates myocardial ischemia-reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: role of SIRT1 activation. Apoptosis 22(7):942–954

    CAS  PubMed  Google Scholar 

  20. Pei Z, Deng Q, Babcock SA et al (2018) Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: role of autophagy and ER stress. Toxicol Lett 284:10–20

    CAS  PubMed  Google Scholar 

  21. Al-Goblan AS, Al-Alfi MA, Khan MZ (2014) Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 7:587–591

    PubMed  PubMed Central  Google Scholar 

  22. Hall JE, do Carmo JM, da Silva AA et al (2015) Obesity –induced hypertension : interaction of neurohumoral and renal mechanisms. Circ Res 116(6):991–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang Z, Hu Z, Zeng L et al (2011) The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med 50(8):907–917

    CAS  PubMed  Google Scholar 

  24. Sletten AC, Peterson LR, Schaffer JE (2018) Manifestations and mechanisms of myocardial lipotoxicity in obesity. J Intern Med doi. https://doi.org/10.1111/joim.12728

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Choi CS, Savage DB, Kulkarni A et al (2007) Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 282:22678–22688

    CAS  PubMed  Google Scholar 

  26. Ly LD, Xu S, Choi SK et al (2017) Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 49(2):e291

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Lloyd SG (2013) High-fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function after ischemia and reperfusion in obese rats. Nutr Res 33(4):311–321

    PubMed  PubMed Central  Google Scholar 

  28. Li SJ, Liu CH, Chu HP et al (2017) The high-fat diet induces myocardial fibrosis in the metabolically healthy obese minipigs-The role of ER stress and oxidative stress. Clin Nutr 36(3):760–767

    CAS  PubMed  Google Scholar 

  29. Hagenfeldt L, Wahren J, Pernow B et al (1972) Uptake of individual free fatty acids by skeletal muscle and liver in man. J Clin Invest 51:2324–2330

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 22(4):624–638

    Google Scholar 

  31. Nishida K, Otsu K (2017) Inflammation and metabolic cardiomyopathy. Cardiovasc Res 113(4):389–398

    CAS  PubMed  Google Scholar 

  32. Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461

    PubMed  Google Scholar 

  33. Nakamura T, Furuhashi M, Li P et al (2010) Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140(3):338–348

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hotamisligil GS (2005) (2005) role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 54(Suppl 2):S73–S78

    CAS  PubMed  Google Scholar 

  35. Shih YC, Chen CL, Zhang Y et al (2018) Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circ Res 122(8):1052–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Veronica G, Esther RRM (2011) Metabolic syndrome: early development and aging. J Diabetes Metab S2:002. https://doi.org/10.4172/2155-6156.S2-002

    Article  Google Scholar 

  37. Strait JB, Lakatta EG (2012) Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 8:143–164

    PubMed  PubMed Central  Google Scholar 

  38. Yang X, Sreejayan N, Ren J (2005) Views from within and beyond: narratives of cardiac contractile dysfunction under senescence. Endocrine 26:127–137

    CAS  PubMed  Google Scholar 

  39. Csiszar A, Sosnowska D, Wang M et al (2012) Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment. J Gerontol A Biol Sci Med Sci 67(8):811–820

    PubMed  PubMed Central  Google Scholar 

  40. Nair S, Ren J (2012) Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle 11(11):2092–2099

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu J, Xia S, Kalionis B et al (2014) The role of oxidative stress and inflammation in cardiovascular aging. Biomed Res Int 2014:615312

    PubMed  PubMed Central  Google Scholar 

  42. DeQuach JA, Mezzano V, Miglani A et al (2010) Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One 5:e13039

    PubMed  PubMed Central  Google Scholar 

  43. Ouzounian M, Lee DS, Liu PP (2008) Diastolic heart failure: mechanisms and controversies. Nat Clin Pract Cardiovasc Med 5:375–386

    PubMed  Google Scholar 

  44. Bujak M, Ren G, Kweon HJ et al (2007) Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116(19):2127–2138

    CAS  PubMed  Google Scholar 

  45. Reed AL, Tanaka A, Sorescu D et al (2011) Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse. Am J Physiol Heart Circ Physiol 301:H824–H831

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Triggle CR, Ding H (2011) The endothelium in compliance and resistance vessels. Front Biosci 3:730–744

    Google Scholar 

  47. Suganya N, Bhakkiyalakshmi E, Sarada DV et al (2016) Reversibility of endothelial dysfunction in diabetes: role of polyphenols. Br J Nutr 116(2):223–246

    CAS  PubMed  Google Scholar 

  48. El-Sayyad HI, Al-Haggar MS, El-Ghawet HA et al (2012) Cardiomyopathy and angiogenesis defects of Wistar rat fetuses of diabetic and hypercholesterolemic mothers. Nutrition 28(7–8):e33–e43

    CAS  PubMed  Google Scholar 

  49. El-Sayyad HIH, El-Sherbiny M, Sobh MA et al (2011) Protective effects of Morus alba leaves extract on ocular functions of pups from diabetic and hypercholesterolemic mother rats. Int J Biol Sci 7:715–728

    CAS  PubMed  PubMed Central  Google Scholar 

  50. He H, Xu J, Warren CM et al (2012) Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood 120(15):3152–3162

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Galvan-Pena S, O’Neill LA (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420

    PubMed  PubMed Central  Google Scholar 

  52. Veilleux A, Grenier E, Marceau P et al (2014) Intestinal lipid handling: evidence and implication of insulin signaling abnormalities in human obese subjects. Arterioscler Thromb Vasc Biol 34:644–653

    CAS  PubMed  Google Scholar 

  53. Martin J, Collot-Teixeira S, McGregor L et al (2007) The dialogue between endothelial cells and monocytes/macrophages in vascular syndromes. Curr Pharm Des 13(17):1751–1759

    CAS  PubMed  Google Scholar 

  54. Voulgari C, Papadogiannis D, Tentolouris N (2010) Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag 6:883–903

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Thomas D, Apovian C (2017) Macrophage functions in lean and obese adipose tissue. Metabolism 72:120–143

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang Y, Wang GZ, Rabinovitch PS et al (2014) Macrophage mitochondrial oxidative stress promotes atherosclerosis and NF-κB-mediated inflammation in macrophages. Circ Res 114(3):421–433

    CAS  PubMed  Google Scholar 

  57. Castaneda OA, Lee SC, Ho CT et al (2017) Macrophage in oxidative stress and models to evaluate the antioxidant functions of dietary natural compounds. J Food Drug Anal 25(1):111–118

    CAS  PubMed  Google Scholar 

  58. Herrera MD, Mingorance C, Rodriguez-Rodriguez R et al (2010) Endothelial dysfunction and aging: an update. Ageing Res Rev 9:142–152

    CAS  PubMed  Google Scholar 

  59. Pierce GL, Larocca TJ (2008) Reduced vascular tetrahydrobiopterin (BH4) and endothelial function with ageing: is it time for a chronic BH4 supplementation trial in middle-aged and older adults? J Physiol 586(11):2673–2674

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang F, Yu X, Li T et al (2017) Exogenous H2S regulates endoplasmic reticulum-mitochondria cross-talk to inhibit apoptotic pathways in STZ-induced type I diabetes. Am J Physiol Endocrinol Metab 312(3):E190–E203

    PubMed  Google Scholar 

  61. Schrieks IC, Nozza A, Stähli BE et al (2018) Adiponectin, free fatty acids, and cardiovascular outcomes in patients with type 2 diabetes and acute coronary syndrome. Diabetes Care pii:dc180158. https://doi.org/10.2337/dc18-0158

    CAS  PubMed  Google Scholar 

  62. Mennerich D, Kellokumpu S, Kietzmann T (2018) Hypoxia and reactive oxygen species as modulators of endoplasmic reticulum and Golgi homeostasis. Antioxid Redox Signal doi. https://doi.org/10.1089/ars.2018.7523

    CAS  Google Scholar 

  63. Xu J, Wang G, Wang Y et al (2009) Diabetes and angiotensin II- induced cardiac endoplasmic reticulum stress and cell death: metallothionein protection. J Cell Mol Med 8A:1499–1512

    Google Scholar 

  64. Shah MS, Brownlee M (2016) Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 118(11):1808–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hsu YJ, Hsu SC, Hsu CP et al (2017) Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model. Int J Cardiol 228:543–552

    PubMed  Google Scholar 

  66. Shen X, Zhang K, Kaufman RJ (2004) The unfolded protein response – a stress signaling pathway of the endoplasmic reticulum. J Chem Neuro 28(1):279–292

    CAS  PubMed  Google Scholar 

  67. Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res Fundam Mol Mech Mutagen 569(1–2):29–63

    Google Scholar 

  68. Robinson PJ, Pringle MA, Woolhead CA et al (2017) Folding of single domain protein entering the endoplasmic reticulum precedes disulfide formation. J Biol Chem 292(17):6978–6986

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    CAS  PubMed  Google Scholar 

  70. Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090

    CAS  PubMed  Google Scholar 

  71. Schonthal AH (2012) Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo) 2012:857516

    Google Scholar 

  72. Van der Vlies D, Makkinje M, Jansens A et al (2003) Oxidation of ER resident proteins upon oxidative stress: effects of altering cellular redox/antioxidant status and implications for protein maturation. Antioxid. Redox Signal 5:381–387

    Google Scholar 

  73. Moroder L, Besse D, Musiol HJ et al (1996) Oxidative folding of cystine-rich peptides vs. regioselective cysteine pairing strategies. Biopolymers 40:207–234

    CAS  PubMed  Google Scholar 

  74. Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279:20108–20117

    CAS  PubMed  Google Scholar 

  75. Malhotra JD, Kaufman RJ (2011) ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol 3:a004424

    PubMed  PubMed Central  Google Scholar 

  76. Zeeshan HM, Lee GH, Kim HR et al (2016) Endoplasmic reticulum stress and associated ROS. Int J Mol Sci 17:327

    PubMed  PubMed Central  Google Scholar 

  77. Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal 21:396–413

    CAS  Google Scholar 

  78. Bhandary B, Marahatta A, Kim HR et al (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–456

    PubMed  PubMed Central  Google Scholar 

  79. Yang Q, Gao H, Dong R et al (2016a) Sequential changes of endoplasmic reticulum stress and apoptosis in myocardial fibrosis of diabetes mellitus-induced rats. Mol Med Rep 13(6):5037–5044

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang R, Jia Q, Liu XF et al (2016b) Effect of hydrogen sulfide on oxidative stress and endoplasmic reticulum stress indiabetic cardiomyopathy. Zhongguo Ying Yong Sheng Li Xue Za Zhi 32(1):8–12

    PubMed  Google Scholar 

  81. Liu Z, Lv Y, Zhao N et al (2015) Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death Dis 6:e1822

    CAS  Google Scholar 

  82. Wang X, Xu L, Gillette TG et al (2018) The unfolded protein response in ischemic heart disease. J Mol Cell Cardiol 117:19–25

    CAS  PubMed  Google Scholar 

  83. Rieusset J (2018) The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update. Cell Death Dis 9:388

    PubMed  PubMed Central  Google Scholar 

  84. Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol 38:317–332

    CAS  Google Scholar 

  85. Fazi B, Melino S, De Rubeis S et al (2009) Acetylation of RTN-1C regulates the induction of ER stress by the inhibition of HDAC activity in neuroectodermal tumors. Oncogene 28:3814–3824

    CAS  PubMed  Google Scholar 

  86. Stankov K, Stanimirov B, Mikov M (2013) Cellular responses to endoplasmic reticulum stress. Biologia Serbica 35(1–2):15–23

    Google Scholar 

  87. Araki K, Nagata K (2012) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 4:a015438

    PubMed  PubMed Central  Google Scholar 

  88. Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658

    CAS  PubMed  Google Scholar 

  89. Cominacini L, Mozzini C, Garbin U et al (2015) Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic Biol Med 88(Pt B):233–242

    CAS  PubMed  Google Scholar 

  90. Sreedhar R, Giridharan VV, Arumugam S et al (2010) Role of MAPK-mediated endoplasmic reticulum stress signaling in the heart during aging in senescence-accelerated prone mice. Biofactors 42(4):368–375

    Google Scholar 

  91. Wu Y, Reece EA, Zhong J et al (2016) Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis. Am J Obstet Gynecol 215(3):366.e1–366.e10

    PubMed  PubMed Central  Google Scholar 

  92. Civelek M, Manduchi E, Riley RJ et al (2009) Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ Res 105(5):453–461

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Puthalakath H, O’Reilly LA, Gunn P et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    CAS  PubMed  Google Scholar 

  94. Ghemrawi R, Battaglia-Hsu SF, Arnold C (2018) Endoplasmic reticulum stress in metabolic disorders. Cells 7(6):pii:E63. https://doi.org/10.3390/cells7060063

    PubMed Central  Google Scholar 

  95. Foufelle F, Ferré P (2007) Unfolded protein response: its role in physiology and physiopathology. Med Sci (Paris) 23(3):291–296

    Google Scholar 

  96. Ozcan L, Tabas I (2012) Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 63: 317–328

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Stanley WC (2001) Changes in cardiac metabolism: a critical step from stable angina to ischaemic cardiomyopathy. Eur Heart J Suppl 3(O):O2–O7

    Google Scholar 

  98. Santulli G, Xie W, Reiken SR et al (2015) Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A 112(36):11389–11394

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Li Q, Su D, O’Rourke B et al (2015) Mitochondria-derived ROS bursts disturb Ca2+ cycling and induce abnormal automaticity in Guinea pig cardiomyocytes: a theoretical study. Am J Physiol Heart Circ Physiol 308(6):H623–H636

    CAS  PubMed  Google Scholar 

  100. García-Rúa V, Otero MF, Lear PV et al (2012) Increased expression of fatty-acid and calcium metabolism genes in failing human heart. PLoS One 7:e37505

    PubMed  PubMed Central  Google Scholar 

  101. Leichman JG, Aguilar D, King TM et al (2006) Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity. Am J Clin Nutr 84:336–341

    CAS  PubMed  Google Scholar 

  102. Neubauer S (2007) The failing heart – an engine out of fuel. N Engl J Med 356:1140–1151

    PubMed  Google Scholar 

  103. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    PubMed  Google Scholar 

  104. Boengler K, Kosiol M, Mayr M et al (2017) Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 8(3):349–369

    PubMed  PubMed Central  Google Scholar 

  105. Martín-Fernández B, Gredilla R (2016) Mitochondria and oxidative stress in heart aging. Age (Dordr) 38(4):225–238

    Google Scholar 

  106. Olgar Y, Degirmenci S, Durak A et al (2018) Aging related functional and structural changes in the heart and aorta: MitoTEMPO improves aged-cardiovascular performance. Exp Gerontol 110:172–181

    PubMed  Google Scholar 

  107. Joseph SK, Nakao SK, Sukumvanich S (2006) Reactivity of free thiol groups in type-I inositol trisphosphate receptors. Biochem J 393:575–582

    CAS  PubMed  Google Scholar 

  108. Murri M, El Azzouzi H (2018) MicroRNAs as regulators of mitochondrial dysfunction and obesity. Am J Physiol Heart Circ Physiol 13. https://doi.org/10.1152/ajpheart.00691.2017

    CAS  PubMed  Google Scholar 

  109. Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171(8):2080–2090

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Duncan JG (2011) Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta 1813(2011):1351–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nat. Genet 34(2003):267–273

    CAS  Google Scholar 

  112. Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116(3):615–622

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Judge S, Leeuwenburgh C (2007) Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol 292(6):C1983–C1992

    CAS  PubMed  Google Scholar 

  114. Sibouakaz D, Othmani-Mecif K, Fernane A et al (2018) Biochemical and ultrastructural cardiac changes induced by high-fat diet in female and male Prepubertal rabbits. Anal Cell Pathol (Amst). 2018:6430696. https://doi.org/10.1155/2018/6430696

    Google Scholar 

  115. Kujoth GC, Hiona A, Pugh TD et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484

    CAS  PubMed  Google Scholar 

  116. Gredilla R, Bohr VA, Stevnsner T (2010) Mitochondrial DNA repair and association with aging – an update. Exp Gerontol 45(7–8):478–488

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lopez-Otin C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Koshiba T, Detmer SA, Kaiser JT et al (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858–862

    CAS  PubMed  Google Scholar 

  119. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    CAS  PubMed  Google Scholar 

  120. Rojo M, Legros F, Chateau D et al (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663–1674

    CAS  PubMed  Google Scholar 

  121. Olichon A, Emorine LJ, Descoins E et al (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 523(1–3):171–176

    CAS  PubMed  Google Scholar 

  122. Cipolat S, Martins de Brito O, Dal Zilio B et al (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927–15932

    CAS  PubMed  PubMed Central  Google Scholar 

  123. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Google Scholar 

  124. Smirnova E, Griparic L, Shurland DL et al (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151:367–380

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tsushima K, Bugger H, Wende AR et al (2018) Mitochondrial reactive oxygen species in Lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 122(1):58–73

    CAS  PubMed  Google Scholar 

  127. Kang PT, Chen CL, Lin P et al (2018) Mitochondrial complex I in the post-ischemic heart reperfusion-mediated oxidative injury and protein cysteine sulfonation. J Mol Cell Cardiol pii:S0022-2828(18)30680–1

    Google Scholar 

  128. Tse G, Yan BP, Chan YW et al (2016) Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front Physiol 7:313

    Google Scholar 

  129. Bertero E, Maack C (2018) Calcium signaling and reactive oxygen species in mitochondria. Circ Res 122(10):1460–1478

    CAS  PubMed  Google Scholar 

  130. Hassanpour SH, Dehghani MA, Karami SZ (2018) Study of respiratory chain dysfunction in heart disease. J Cardiovasc Thorac Res 10(1):1–13

    PubMed  PubMed Central  Google Scholar 

  131. Nishio S, Teshima Y, Takahashi N et al (2012) Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart. J Mol Cell Cardiol 52(5):1103–1011

    CAS  PubMed  Google Scholar 

  132. Repnik U, Turk B (2010) Lysosomal–mitochondrial cross-talk during cell death. Mitochondrion 10:662–669

    CAS  PubMed  Google Scholar 

  133. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochem Mosc 70:200–214

    CAS  Google Scholar 

  134. Kurz T, Eaton JW, Brunk UT (2010) Redox activity within the lysosomal compartment: implications for aging and apoptosis. Antioxid Redox Signal 13(4):511–523

    CAS  PubMed  Google Scholar 

  135. Michelangeli F, Ogunbayo OA, Wootton LL (2005) A plethora of interacting organellar Ca2+ stores. Curr Opin Cell Biol 17:135–140

    CAS  PubMed  Google Scholar 

  136. Missiaen L, Raeymaekers L, Dode L et al (2004) SPCA1 pumps and Hailey– Hailey disease. Biochem Biophys Res Commun 322:1204–1213

    CAS  PubMed  Google Scholar 

  137. Joseph LC, Subramanyam P, Radlicz C et al (2016) Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia. Heart Rhythm 13(8):1699–1706

    PubMed  PubMed Central  Google Scholar 

  138. Lane JD, Lucocq J, Pryde J et al (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156:495–509

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Hampton MB, Fadeel B, Orrenius S (1998) Redox regulation of the caspases during apoptosis. Ann N Y Acad Sci 854:328–335

    CAS  PubMed  Google Scholar 

  140. Seko Y, Fujimura T, Yao T et al (2015) Secreted tyrosine sulfated-eIF5A mediates oxidative stress-induced apoptosis. Sci Rep 5:13737. https://doi.org/10.1038/srep13737

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sbodio JI, Snyder SH, Paul BD (2018) Golgi stress response programs cysteine metabolism to confer cytoprotectionin Huntington’s disease. Proc Natl Acad Sci U S A 115(4):780–785

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Burke MA, Ardehali H (2007) Mitochondrial ATP-binding cassette proteins. Transl Res 150(2):73–80

    CAS  PubMed  Google Scholar 

  143. Sousa L, Pessoa MTC, Costa TGF et al (2018) Iron overload impact on P-ATPases. Ann Hematol 97(3):377–385

    CAS  PubMed  Google Scholar 

  144. Patton SM, Piñero DJ, Surguladze N et al (2005) Subcellular localization of iron regulatory proteins to Golgi and ER membranes. J Cell Sci 118(Pt 19):4365–4373

    CAS  PubMed  Google Scholar 

  145. Warren CM, Ziyad S, Briot A et al (2014) A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci Signal 7(307):ra1

    PubMed  PubMed Central  Google Scholar 

  146. Wang H, Joseph JA (2000) Mechanism of hydrogen peroxide-induced calcium deregulation in PC12 cells. Free Radic Biol Med 28:1222–1231

    CAS  PubMed  Google Scholar 

  147. Brookes PS, Yoon Y, Robotham JL et al (2004) Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    CAS  PubMed  Google Scholar 

  148. Görlach A, Bertram K, Hudecova S et al (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271

    PubMed  PubMed Central  Google Scholar 

  149. Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tai H, Wang Z, Gong H, Han X, Zhou J, Wang X et al (2017) Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 13(1):99–113

    CAS  PubMed  Google Scholar 

  151. Nakatogawa H, Suzuki K, Kamada Y et al (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    CAS  PubMed  Google Scholar 

  152. Iglewski M, Hill JA, Lavandero S et al (2010) Mitochondrial fission and autophagy in the normal and diseased heart. Curr Hypertens Rep 12(6):418–425

    PubMed  PubMed Central  Google Scholar 

  153. Terman A, Brunk UT (2005) The aging myocardium: roles of mitochondrial damage and lysosomal degradation. Heart Lung Circ 14(2):107–114

    CAS  PubMed  Google Scholar 

  154. Terman A, Kurz T, Gustafsson B et al (2008) The involvement of lysosomes in myocardial aging and disease. Curr Cardiol Rev 4(2):107–115

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Sciarretta S, Volpe M, Sadoshima J (2012) Is reactivation of autophagy a possible therapeutic solution for obesity and metabolic syndrome? Autophagy 8:1252–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Sciarretta S, Boppana VS, Umapathi M et al (2015) Boosting autophagy in the diabetic heart: a translational perspective. Cardiovasc Diagn Ther 5(5):394–402

    PubMed  PubMed Central  Google Scholar 

  157. Wang F, Jia J, Rodrigues B (2017) Autophagy, metabolic disease, and pathogenesis of heart dysfunction. Can J Cardiol 33(7):850–859

    PubMed  Google Scholar 

  158. Ren SY, Xu X (2015) Role of autophagy in metabolic syndrome-associated heart disease. Biochim Biophys Acta 1852(2):225–231

    CAS  Google Scholar 

  159. Laskar A, Miah S, Andersson RG et al (2010) Prevention of 7β-hydroxycholesterol-induced cell death by mangafodipir is mediated through lysosomal and mitochondrial pathways. Eur J Pharmacol 640(1–3):124–128

    CAS  PubMed  Google Scholar 

  160. Shirakabe A, Ikeda Y, Sciarretta S et al (2016) Aging and autophagy in the heart. Circ Res 118(10):1563–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Yu Y, Wang L, Delguste F et al (2017b) Advanced glycation end products receptor RAGE controls myocardial dysfunction and oxidative stress in high-fat fed mice by sustaining mitochondrial dynamics and autophagy-lysosome pathway. Free Radic Biol Med 112:397–410

    CAS  PubMed  Google Scholar 

  162. Petermann I, Mayer C, Stypmann J et al (2006) Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cathepsin L knockout mice. FASEB J 20(8):1266–1268

    CAS  PubMed  Google Scholar 

  163. Leon LJ, Gustafsson ÅB (2016) Staying young at heart: autophagy and adaptation to cardiac aging. J Mol Cell Cardiol 95:78–85

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan I. H. El-Sayyad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Sayyad, H.I.H. (2019). Myocardial Oxidative Stress and Metabolic Diseases. In: Chakraborti, S., Dhalla, N., Dikshit, M., Ganguly, N. (eds) Modulation of Oxidative Stress in Heart Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8946-7_4

Download citation

Publish with us

Policies and ethics