Skip to main content

Targeting Mitochondria for Therapy of Cardiovascular Disease

  • Chapter
  • First Online:
Modulation of Oxidative Stress in Heart Disease

Abstract

Mitochondria play a crucial role in regulation of rhythmical contraction of myocardium, myocardiocyte physiology, stress response and redox signaling cascades, and overall heart function, principally by meeting the energy demand through oxidative phosphorylation. Mitochondrial dysfunction and subsequent imbalance in ATP supply often leads to diseased condition. Although cardiovascular diseases are attributed to almost one third of annual global death, universally accepted strategies for treatment of myocardial cardiomyopathies are yet to be established. This review summarizes the classical and futuristic therapies for treatment of heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miksanek T (2011) The sublime engine: a biography of the human heart. JAMA 305:2580

    CAS  Google Scholar 

  2. Neubauer S (2007) The failing heart – an engine out of fuel. N Engl J Med Overseas Ed 356:1140–1151

    Google Scholar 

  3. Wang Z, Ying Z, Bosy-Westphal A et al (2010) Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr 92:1369–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Piquereau J, Caffin F, Novotova M et al (2013) Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 4:102

    CAS  PubMed  PubMed Central  Google Scholar 

  5. McCommis KS, Finck BN (2015) Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J 466:443–454

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamilton JA, Johnson RA, Corkey B et al (2001) Fatty acid transport. J Mol Neurosci 16:99–108

    CAS  PubMed  Google Scholar 

  7. Ramsay RR, Gandour RD, van der Leij FR (2001) Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta, Proteins Proteomics 1546:21–43

    CAS  Google Scholar 

  8. Grynberg A, Demaison L (1996) Fatty acid oxidation in the heart. J Cardiovasc Pharmacol 28:11–17

    Google Scholar 

  9. Moczulski D, Majak I, Mamczur D (2009) An overview of beta-oxidation disorders. Postepy Hig Med Dosw (Online) 63:266–277

    Google Scholar 

  10. Lopaschuk GD, Collins-Nakai RL, Itoi T (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res 26:1172–1180

    CAS  PubMed  Google Scholar 

  11. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    CAS  PubMed  Google Scholar 

  12. Benard G, Faustin B, Passerieux E et al (2006) Physiological diversity of mitochondrial oxidative phosphorylation. Am J Phys Cell Physiol 291:C1172–C1182

    CAS  Google Scholar 

  13. Wallimann T, Wyss M, Brdiczka D et al (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatinecircuit’ for cellular energy homeostasis. Biochem J 281:21

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lacombe ML, Munier A, Mehus JG et al (2000) The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr 32:247–258

    CAS  PubMed  Google Scholar 

  15. Chen Q, Vazquez EJ, Moghaddas S et al (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    CAS  PubMed  Google Scholar 

  16. Herrero A, Barja G (2000) Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J Bioenerg Biomembr 32:609–615

    CAS  PubMed  Google Scholar 

  17. McLennan HR, DegliEsposti M (2000) The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32:153–162

    CAS  PubMed  Google Scholar 

  18. Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48:657–667

    CAS  PubMed  Google Scholar 

  19. Sohal RS, Svensson I, Sohal BH (1989) Superoxide anion radical production in different animal species. Mech Ageing Dev 49:129–135

    CAS  PubMed  Google Scholar 

  20. Stadtman ER, Berlett BS (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30:225–243

    CAS  PubMed  Google Scholar 

  21. Choksi KB, Boylston WH, Rabek JP et al (2004) Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta 1688:95–101

    CAS  PubMed  Google Scholar 

  22. Petrosillo G, Ruggiero FM, Pistolese M et al (2001) Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett 509:435–438

    CAS  PubMed  Google Scholar 

  23. Paradies G, Petrosillo G, Pistolese M et al (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141

    CAS  PubMed  Google Scholar 

  24. Shen Z, Wu W, Hazen SL (2000) Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry 39:5474–5482

    CAS  PubMed  Google Scholar 

  25. LeDoux SP, Wilson GL (2001) Base excision repair of mitochondrial DNA damage in mammalian cells. Prog Nucleic Acid Res Mol Biol 68:273–284

    CAS  PubMed  Google Scholar 

  26. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94:514–519

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cooper JM, Schapira AH (2003) Friedreich’s Ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. Biofactors 18:163–171

    CAS  PubMed  Google Scholar 

  28. Nakagami H, Liao JK (2004) Statins and myocardial hypertrophy. Coron Artery Dis 15:247–250

    PubMed  PubMed Central  Google Scholar 

  29. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    CAS  PubMed  PubMed Central  Google Scholar 

  30. DiMauro S, Mancuso M, Naini A (2004) Mitochondrial encephalomyopathies: therapeutic approach. Ann N Y Acad Sci 1011:232–245

    CAS  PubMed  Google Scholar 

  31. Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81:449–456

    CAS  PubMed  Google Scholar 

  32. Lerman-Sagie T, Rustin P, Lev D et al (2001) Dramatic improvement in mitochondrial cardiomyopathy following treatment with idebenone. J Inherit Metab Dis 24:28–34

    CAS  PubMed  Google Scholar 

  33. Sayed-Ahmed MM, Salman TM, Gaballah HE (2001) Propionyl-L-carnitine as protector against adriamycin-induced cardiomyopathy. Pharmacol Res 43:513–520

    CAS  PubMed  Google Scholar 

  34. Shite J, Qin F, Mao W (2001) Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. J Am Coll Cardiol 38:1734–1740

    CAS  PubMed  Google Scholar 

  35. Roth GA, Johnson C, Abajobir A et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Am J Cardiol 70(1):1–25. 23715

    Google Scholar 

  36. Ferrari R, Guardigli G, Mele D et al (2004) Oxidative stress during myocardial ischemia and heart failure. Curr Pharm Des 10:1699–1711

    CAS  PubMed  Google Scholar 

  37. Sharma A, Fonarow GC, Butler J et al (2016) Coenzyme Q10 and heart failure: a state-of-the-art review. Circ Heart Fail 9:e002639

    CAS  PubMed  Google Scholar 

  38. McMurray JJ, Dunselman P, Wedel H et al (2010) Coenzyme Q10, rosuvastatin, and clinical outcomes in heart failure: a pre-specified substudy of CORONA (Controlled Rosuvastatin Multinational Study in heart failure). J Am Coll Cardiol 56:1196–1204

    CAS  PubMed  Google Scholar 

  39. Mortensen SA, Rosenfeldt F, Kumar A et al (2014) Q-SYMBIO Study Investigators. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2:641–649

    PubMed  Google Scholar 

  40. Shoffner JM, Wallace DC (1994) Oxidative phosphorylation diseases and mitochondrial DNA mutations: diagnosis and treatment. Annu Rev Nutr 14:535–568

    CAS  PubMed  Google Scholar 

  41. Ogasahara S, Yorifuji S, Nishikawa Y et al (1985) Improvement of abnormal pyruvate metabolism and cardiac conduction defect with coenzyme Q10 in Kearns-Sayre syndrome. Neurology 35:372–377

    CAS  PubMed  Google Scholar 

  42. Geromel V, Darin N, Chretien D et al (2002) Coenzyme Q(10) and idebenonein the therapy of respiratory chain diseases: rationale and comparative benefits. Mol Genet Metab 77:21–30

    CAS  PubMed  Google Scholar 

  43. Lonn E, Bosch J, Yusuf S et al (2005) Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293:1338–1347

    PubMed  Google Scholar 

  44. Lipshultz SE, Rifai N, Dalton VM et al (2004) The effect of dexrazoxaneon myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 351:145–153

    CAS  PubMed  Google Scholar 

  45. Kang YJ (1999) The antioxidant function of metallothionein in the heart. Proc Soc Exp Biol Med 222:263–273

    CAS  PubMed  Google Scholar 

  46. Ali MM, Frei E, Straub J et al (2002) Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology 179:85–93

    CAS  PubMed  Google Scholar 

  47. Ungvari Z, Gupte SA, Recchia FA et al (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3:221–229

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pacher P, Liaudet L, Mabley JG et al (2006) Beneficial effects of a novel ultrapotent poly(ADP-ribose)polymerase inhibitor in murine models of heart failure. Int J Mol Med 17:369–375

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas JP, Geiger PG, Girotti AW (1993) Lethal damage to endothelial cells by oxidized low density lipoprotein: role of selenoperoxidases in cytoprotection against lipid hydroperoxide- and iron-mediated reaction. J Lipid Res 34:479–490

    CAS  PubMed  Google Scholar 

  50. Damy T, Kirsch M, Khouzami L et al (2009) Glutathione deficiency in cardiac patients is related to the functional status and structural cardiac abnormalities. PLoS One 4:e4871

    PubMed  PubMed Central  Google Scholar 

  51. Chin BS, Langford NJ, Nuttall SL et al (2003) Anti-oxidative properties of beta-blockers and angiotensin-converting enzyme inhibitors in congestive heart failure. Eur J Heart Fail 5:171–174

    CAS  PubMed  Google Scholar 

  52. Bauersachs J, Widder JD (2008) Endothelial dysfunction in heart failure. Pharmacol Rep 60:119–126

    CAS  PubMed  Google Scholar 

  53. Duncan JG (2011) Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta, Mol Cell Res 1813:1351–1359

    CAS  PubMed  Google Scholar 

  54. Zarain-Herzberg A, Rupp H (1999) Transcriptional modulators targeted at fuel metabolism of hypertrophied heart. Am J Cardiol 83:31–37

    Google Scholar 

  55. Ashrafian H, Horowitz JD, Frenneaux MP (2007) Perhexiline. Cardiovasc Drug Rev 25:76–97

    CAS  PubMed  Google Scholar 

  56. Rupp H, Zarain-Herzberg A, Maisch B (2002) The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz 27:621–636

    PubMed  Google Scholar 

  57. Fragasso G, PiattiMd PM, Monti L et al (2003) Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J 146:854

    CAS  Google Scholar 

  58. Chung MK (2004) Vitamins, supplements, herbal medicines, and arrhythmias. Cardiol Rev 12:73–84

    PubMed  Google Scholar 

  59. Tavazzi L, Tognoni G, Franzosi MG et al (2004) Rationale and design of the GISSI heart failure trial: a large trial to assess the effects of n-3 polyunsaturated fatty acids and rosuvastatin in symptomatic congestive heart failure. Eur J Heart Fail 6:635–641

    CAS  PubMed  Google Scholar 

  60. Siscovick DS, Barringer TA, Fretts AM et al (2017) Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory from the American Heart Association. Circulation 135:e867–e884

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Inoue K, Ando S, Itagaki T et al (2003) Intracellular calcium increasing at the beginning of reperfusion assists the early recovery of myocardial contractility after diltiazem cardioplegia. Jpn J Thorac Cardiovasc Surg 51:98–103

    PubMed  Google Scholar 

  62. Bertolet BD (1999) Calcium antagonists in the post-myocardial infarction setting. Drugs Aging 15:461–470

    CAS  PubMed  Google Scholar 

  63. Theroux P, Gregoire J, Chin C (1998) Intravenous diltiazem in acute myocardial infarction. Diltiazem as adjunctive therapy to activase (DATA) trial. J Am Coll Cardiol 32:620–628

    CAS  PubMed  Google Scholar 

  64. Pizzetti G, Mailhac A, Li Volsi L et al (2001) Beneficial effects of diltiazem during myocardial reperfusion: a randomized trial in acute myocardial infarction. Ital Heart J 2:757–765

    CAS  PubMed  Google Scholar 

  65. Stowe DF, Kevin LG (2004) Cardiac preconditioning by volatile anesthetic agents: a defining role for altered mitochondrial bioenergetics. Antioxid Redox Signal 6:439–448

    CAS  PubMed  Google Scholar 

  66. Julier K, da Silva R, Garcia C et al (2003) Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 98:1315–1327

    CAS  PubMed  Google Scholar 

  67. Argaud L, Ovize M (2004) How to use the paradigm of ischemic preconditioning to protect the heart? Med Sci (Paris) 20:521–525

    Google Scholar 

  68. Sato T, Sasaki N, O’Rourke B et al (2000) Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels. J Am Coll Cardiol 35:514–518

    CAS  PubMed  Google Scholar 

  69. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61:372–385

    CAS  PubMed  Google Scholar 

  70. Minners J, van den Bos EJ, Yellon DM et al (2000) Dinitrophenol, cyclosporin A, and trimetazidine modulate preconditioning in the isolated rat heart: support for a mitochondrial role in cardioprotection. Cardiovasc Res 47:68–73

    CAS  PubMed  Google Scholar 

  71. Ganote CE, Armstrong SC (2003) Effects of CCCP-induced mitochondrial uncoupling and cyclosporin A on cell volume, cell injury and preconditioning protection of isolated rabbit cardiomyocytes. J Mol Cell Cardiol 35:749–759

    CAS  PubMed  Google Scholar 

  72. Bagchi D, Sen CK, Ray SD et al (2003) Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 523:87–97

    PubMed  Google Scholar 

  73. Jonassen AK, Sack MN, Mjos OD et al (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89:1191–1198

    CAS  PubMed  Google Scholar 

  74. Suzuki YJ (2003) Growth factor signaling for cardioprotection against oxidative stress-induced apoptosis. Antioxid Redox Signal 5:741–749

    CAS  PubMed  Google Scholar 

  75. Chao W, Matsui T, Novikov MS et al (2003) Strategic advantages of insulin-like growth factor-I expression for cardioprotection. J Gene Med 5:277–286

    CAS  PubMed  Google Scholar 

  76. Matsui T, Li L, Wu JC et al (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–22901

    CAS  PubMed  Google Scholar 

  77. Serruys PW, Morice MC, Kappetein AP et al (2009) Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 360:961–972

    CAS  PubMed  Google Scholar 

  78. Xu Z, Jiao Z, Cohen MV et al (2002) Protection from AMP 579 can be added to that from either cariporide or ischemic preconditioning in ischemic rabbit heart. J Cardiovasc Pharmacol 40:510–518

    CAS  PubMed  Google Scholar 

  79. Jessup M, Greenberg B, Mancini D et al (2011) Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:304–313

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zsebo K, Yaroshinsky A, Rudy JJ et al (2014) Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res 114:101–108

    CAS  PubMed  Google Scholar 

  81. Greenberg B, Butler J, Felker GM et al (2016) Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387:1178–1186

    CAS  PubMed  Google Scholar 

  82. Pleger ST, Shan C, Ksienzyk J et al (2011) Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 3:92ra64

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tanaka M, Nakae S, Terry RD et al (2004) Cardiomyocyte-specific Bcl-2 overexpression attenuates ischemia-reperfusion injury, immune response during acute rejection, and graft coronary artery disease. Blood 104:3789–3796

    CAS  PubMed  Google Scholar 

  84. Chatterjee S, Stewart AS, Bish LT et al (2002) Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation 106:1212–1217

    Google Scholar 

  85. Laugwitz KL, Moretti A, Weig HJ et al (2001) Blocking caspase-activated apoptosis improves contractility in failing myocardium. Hum Gene Ther 12:2051–2063

    CAS  PubMed  Google Scholar 

  86. Teshima Y, Akao M, Jones SP et al (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200

    CAS  PubMed  Google Scholar 

  87. Stacpoole PW, Owen R, Flotte TR (2003) The pyruvate dehydrogenase complex as a target for gene therapy. Curr Gene Ther 3:239–245

    CAS  PubMed  Google Scholar 

  88. Melo LG, Agrawal R, Zhang L et al (2002) Gene therapy strategy for long-term myocardial protection using adeno-associated virusmediated delivery of hemeoxygenase gene. Circulation 105:602–607

    CAS  PubMed  Google Scholar 

  89. Chung ES, Miller L, Patel AN (2015) Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial. Eur Heart J 36:2228–2238

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Pislaru S, Janssens SP, Gersh BJ et al (2002) Defining gene transfer before expecting gene therapy: putting the horse before the cart. Circulation 106:631–636

    CAS  PubMed  Google Scholar 

  91. Isner JM, Vale PR, Symes JF et al (2001) Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 89:389–400

    CAS  PubMed  Google Scholar 

  92. Baumgartner I, Isner JM (2001) Somatic gene therapy in the cardiovascular system. Annu Rev Physiol 63:427–450

    CAS  PubMed  Google Scholar 

  93. Morishita R, Higaki J, Tomita N et al (1998) Application of transcription factor “decoy” strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res 82:1023–1028

    CAS  PubMed  Google Scholar 

  94. McGregor A, Temperley R, Chrzanowska-Lightowlers Z et al (2001) Absence of expression from RNA internalised into electroporated mammalian mitochondria. Mol Gen Genomics 265:721–729

    CAS  Google Scholar 

  95. Chinnery PF, Taylor RW, Diekert K et al (1999) Peptide nucleic acid delivery to human mitochondria. Gene Ther 6:1919–1928

    CAS  PubMed  Google Scholar 

  96. Muratovska A, Lightowlers RN, Taylor RW et al (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 29:1852–1863

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Flierl A, Jackson C, Cottrell B et al (2003) Targeted delivery of DNA to the mitochondrial compartment viaimport sequence-conjugated peptide nucleic acid. Mol Ther 7:550–557

    CAS  PubMed  Google Scholar 

  98. D’Souza GG, Rammohan R, Cheng SM et al (2003) DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92:189–197

    PubMed  Google Scholar 

  99. Smith RA, Porteous CM, Gane AM et al (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100:5407–5412

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao K, Zhao GM, Wu D et al (2004) Cell-permeable peptide antioxidant stargeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    CAS  PubMed  Google Scholar 

  101. Karantalis V, Hare JM (2015) Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 116:1413–1430

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    CAS  PubMed  Google Scholar 

  103. Maitra A, Arking DE, Shivapurkar N et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099–1103

    CAS  PubMed  Google Scholar 

  104. Falk MJ, Sondheimer N (2010) Mitochondrial genetic diseases. Curr Opin Pediatr 22:711–716

    PubMed  PubMed Central  Google Scholar 

  105. Davis RL, Liang C, Sue CM (2018) Mitochondrial diseases. Handb Clin Neurol 147:125–141

    PubMed  Google Scholar 

  106. Gnecchi M, He H, Liang OD et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368

    CAS  PubMed  Google Scholar 

  107. Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci 102:11474–11479

    CAS  PubMed  Google Scholar 

  108. Markel TA, Wang Y, Herrmann JL et al (2008) VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol Heart Circ Physiol 295:H2308–H2314

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rehman J, Traktuev D, Li J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    PubMed  Google Scholar 

  110. Noiseux N, Gnecchi M, Lopez-Ilasaca M et al (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14:840–850

    CAS  PubMed  Google Scholar 

  111. Willems E, Cabral-Teixeira J, Schade D et al (2012) Small molecule-mediated TGFβ Type II receptor degradation promotes cardiomyogenesis in embryonic stem cells. Cell Stem Cell 11:242–252

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tse HF, Yiu KH, Lau CP (2007) Bone marrow stem cell therapy for myocardial angiogenesis. Curr Vasc Pharmacol 5:103–112

    CAS  PubMed  Google Scholar 

  113. Hatzistergos KE, Quevedo H, Oskouei BN et al (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107:913–922

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Loffredo FS, Steinhauser ML, Gannon J et al (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8:389–398

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Suzuki G, Iyer V, Lee TC et al (2011) Autologous mesenchymal stem cells mobilize ckit+ and cd133+ bone marrow progenitor cells and improve regional function in hibernating myocardium. Circ Res 109:1044–1054

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samanta, B., Banerjee, S., Nandy, S.K., Chakraborti, S. (2019). Targeting Mitochondria for Therapy of Cardiovascular Disease. In: Chakraborti, S., Dhalla, N., Dikshit, M., Ganguly, N. (eds) Modulation of Oxidative Stress in Heart Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8946-7_28

Download citation

Publish with us

Policies and ethics