Skip to main content

Basic Mechanisms of Ischemia/Reperfusion Injury Leading to Cellular and Tissue Damage: Therapeutic Implications

  • Chapter
  • First Online:
Book cover Modulation of Oxidative Stress in Heart Disease

Abstract

Produced free radicals exert their physiological function and thereafter become neutralized by antioxidants. In contrast, if they are produced in abundance, e.g., during ischemia/reperfusion (I/R), after they exhaust antioxidant reserves, they exert their harmful effect on cellular structures. The major significant reactive oxygen species (ROS) are the anion of superoxide (O2•-), the hydrogen peroxide (H2O2), and the hydroxyl radical (OH). The collective term reactive nitrogen species (RNS) mainly includes the radical of nitric oxide (NO), the peroxynitrite potent oxidant (ONOO), the radical nitrogen dioxide (NO2), and other nitrogen oxides. During ischemia, the tissue cells begin to suffer, when the oxygen delivery (DO2) to tissues decreases beyond the critical DO2 (cDO2) level, namely, when the metabolism becomes anaerobic. The cell suffering maximizes, when beta-oxidation of fatty acids is the last fuel that still feeds oxidative phosphorylation. Further drop of DO2 leads to severe ischemia with intracellular conversion of xanthine dehydrogenase to xanthine oxidase and increased concentration of xanthine and hypoxanthine. Upon reperfusion and abundant O2 reentry, free radical burst follows, with membrane destruction and massive cellular damage, mainly coming from the peroxidation of lipid bilayer arrangement. Suggested methods of I/R injury prophylaxis are the use of antioxidants, scavengers, and preconditioning techniques. The new approaches that seem to be promising focus on the progressive reentry of O2 to the thirsty for O2 ischemic tissues: initially in low concentrations of O2 to meet the low potentials of biochemical pathways to use O2 and thereafter in gradually increasing concentrations toward normal. Large, open, double blind, multicenter trials are still lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

adenosine triphosphate

cNOS:

constitutive NO synthase

DO2:

oxygen delivery

GR :

glutathione reductase

GSH :

glutathione reduced

GSSG :

glutathione disulfide

iNOS:

inducible NO synthase

LTF :

lactoferrin

MBPs :

metal-binding proteins

MPO:

myeloperoxidase

NAD+/NADH:

oxidized/reduced adenine dinucleotide

NADP+/NADPH:

oxidized/reduced adenine dinucleotide phosphate

O2ER:

oxygen extraction ratio

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

VO2:

oxygen consumption

XDH:

xanthine dehydrogenase

XO:

xanthine oxidase

XOR :

xanthine oxidoreductase

References

  1. Tasoulis MK, Douzinas EE (2016) Hypoxemic reperfusion of ischemic states: an alternative approach for the attenuation of oxidative stress mediated reperfusion injury. J Biomed Sci 23:7–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344(8924):721–724

    Article  CAS  PubMed  Google Scholar 

  3. Dhawan V (2013) Reactive oxygen and nitrogen species: general considerations. In: Studies on respiratory disorders. Springer, New York, pp 27–48

    Google Scholar 

  4. Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5(2):472–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gourdin M, Dubois P (2013) Impact of Ischemia on Cellular Metabolism. Chapter 1, IntechOpen https://doi.org/10.5772/54509

    Google Scholar 

  6. Łuszczewski A, Matyska-Piekarska E et al (2007) Reactive oxygen species physiological and pathological function in the human body. Reumatolog 45(5):284–289

    Google Scholar 

  7. Rosen H, Klebanoff SJ, Wang Y et al (2009) Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci 106(44):18686–18691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller DM, Buettner GR, Aust SD (1990) Transition metals as catalysts of “autoxidation” reactions. Free Radic Biol Med 8:95–108

    Article  CAS  PubMed  Google Scholar 

  9. Sumimoto H, Miyano K, Takeya R (2005) Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun 338(1):677–686

    Article  CAS  PubMed  Google Scholar 

  10. Kahles T, Brandes RP (2013) Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox 2. Antioxid Redox Signal 18(12):1400–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brandes RP, Weissmann N, Schrode K (2010) NADPH oxidases in cardiovascular disease. Free Radic Biol Med 49(5):687–706

    Article  CAS  PubMed  Google Scholar 

  12. Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol 6:524–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crosswhite P, Sun Z (2010) Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension. J Hypertens 28(2):201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nishino T, Okamoto K, Eger BT et al (2008) Mammalian xanthine oxidoreductase – mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275(13):3278–3289

    Article  CAS  PubMed  Google Scholar 

  15. Chouchani ET, Pell VR, Gaude E et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ros. Nature 515:431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Golwala NH, Hodenette C, Murthy SN et al (2009) Vascular responses to nitrite are mediated by xanthine oxidoreductase and mitochondrial aldehyde dehydrogenase in the rat. Can J Physiol Pharmacol 87:1095–1101

    Article  CAS  PubMed  Google Scholar 

  17. Lee MC, Velayutham M, Komatsu T (2014) Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues. Biochemistry 53:6615–6623

    Article  CAS  PubMed  Google Scholar 

  18. Lee HL, Chen CL, Yeh ST et al (2012) Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion. Am J Phys 302:H1410–H1422

    CAS  Google Scholar 

  19. Perrelli MG, Pagliaro P, Penna C et al (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol 3:186–200

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stowe DF, Camara KS (2009) Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 11:1373–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mc Cord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163

    Article  CAS  Google Scholar 

  22. Kalogeris T, Baines CP, Krenz M et al (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    Article  CAS  PubMed  Google Scholar 

  24. Mironczuk-Chodakowska I, Witkowska AM, Zujko ME (2018) Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 63:68–78

    Article  PubMed  Google Scholar 

  25. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bredt DS (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87(2):682–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Busse R (1990) Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS J 265(1–2):133–136

    Article  CAS  Google Scholar 

  28. Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92(3):639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen K, Popel AS (2006) Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free Radic Biol Med 41(4):668–680

    Article  CAS  PubMed  Google Scholar 

  30. Ignarro LJ, Kadowitz PJ (1985) The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol 25:171–191

    Article  CAS  PubMed  Google Scholar 

  31. Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Babula P, Masarik M, Adam V et al (2012) Mammalian metallothioneins: properties and functions. Metallomics 4(8):739–750

    Article  CAS  PubMed  Google Scholar 

  33. Hineno A, Kaneko K, Yoshida K et al (2011) Ceruloplasmin protects against rotenone-induced oxidative stress and neurotoxicity. Neurochem Res 36(11):2127–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vincent JL (2009) Relevance of albumin in modern critical care medicine. Best Pract Res Clin Anaesthesiol 23(2):183–191

    Article  CAS  PubMed  Google Scholar 

  35. Plantier JL, Duretz V, Devos V et al (2016) Comparison of antioxidant properties of different therapeutic albumin preparations. Biologicals 44(4):226–233

    Article  CAS  PubMed  Google Scholar 

  36. Kreutzer U, Jue T (2004) Role of myoglobin as a scavenger of cellular NO in myocardium. Am J Physiol Heart Circ Physiol 286(3):985–991

    Article  Google Scholar 

  37. Irato P, Santovito G, Piccinni E et al (2001) Oxidative burst and metallothionein as a scavenger in macrophages. Immunol Cell Biol 79(3):251–254

    Article  CAS  PubMed  Google Scholar 

  38. Faisal AA, Al-Salih RMH, Assi AN (2015) Study of effect of thyroidectomy on serum oxidant antioxidants status. Int J Curr Microbiol App Sci 4(4):1051–1060

    CAS  Google Scholar 

  39. Anderson CP, Shen M, Eisenstein RS et al (2012) Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta 1823(9):1468–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chauhan A, Chauhan V, Brown WT et al (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin the antioxidant proteins. Life Sci 75:2539–2549

    Article  CAS  PubMed  Google Scholar 

  41. Talebi R, Ahmadi A, Afraz F et al (2016) Parkinson’s disease and lactoferrin: analysis of dependent protein networks. Gene Rep 4:177–183

    Article  Google Scholar 

  42. Samuelsson M, Vainikka L, Öllinger K (2011) Glutathione in the blood and cerebrospinal fluid: a study in healthy male volunteers. Neuropeptides 45(4):287–292

    Article  CAS  PubMed  Google Scholar 

  43. Douzinas EE, Livaditi O, Xiarchos AG et al (2006) The effect of hypoxemic resuscitation of hemorrhagic shock on hemodynamic stabilization and inflammatory response: a pilot study in a rat experimental model. J Trauma 61(4):918–923

    Article  PubMed  Google Scholar 

  44. Sautin YY, Nakagawa T, Zharikov S et al (2007) Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Phys Cell Physiol 293(2):C584–C5C5

    Article  CAS  Google Scholar 

  45. Stinefelt B, Leonard SS, Blemings KP et al (2005) Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid. Ann Clin Lab Sci 35(1):37–45

    CAS  PubMed  Google Scholar 

  46. Bentinger M, Tekle M, Dallner (2010) Coenzyme Q–biosynthesis and functions. Biochem Biophys Res Commun 396(1):74–79

    Article  CAS  PubMed  Google Scholar 

  47. Acosta JM, Vazquez Fonseca L, Desbats MA et al (2016) Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 8:1079–1085

    Article  CAS  Google Scholar 

  48. Douzinas E (2009) Progressive hemorrhage: administer oxygen or early resuscitation? Intensive Care Med 35:1664–1666

    Article  PubMed  Google Scholar 

  49. Vincent JL, De Backer D (2014) My paper 20 years later: effects of dobutamine on the VO2/DO2 relationship. Intensive Care Med 40:1643–1648

    Article  CAS  PubMed  Google Scholar 

  50. Schumacher PT, Cain SM (1987) The concept of a critical DO2. Intensive Care Med 13:223–229

    Article  Google Scholar 

  51. Martin C, Riou B, Vallet B (2006) Physiologie humaine appliquée (First Editions, Chapter 17:217–227)

    Google Scholar 

  52. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 218:1–14

    Article  Google Scholar 

  53. Repetto M, Semprine J, Boveris A (2012) Lipid peroxidation: chemical mechanism, biological implications and analytical determination. IntechOpen https://doi.org/10.5772/45943

    Google Scholar 

  54. Esterbauer H, Koller E, Slee RG et al (1986) Possible involvement of the lipid-peroxidation product 4-hydroxynonenal in the formation of fluorescent chromolipids. Biochem J 239:405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsukagoshi H, Kawata T, Shimizu Y et al (2002) 4-Hydroxy-2-nonenal enhances fibronectin production by IMR-90 human lung fibroblasts partly via activation of epidermal growth factor receptor-linked extracellular signal-regulated kinase p44/42 pathway. Toxicol Appl Pharmacol 184:127–135

    Article  CAS  PubMed  Google Scholar 

  56. Douzinas EE, Andrianakis I, Pitaridis MT et al (2001) The effect of hypoxemic reperfusion on cerebral protection after a severe global ischemic brain insult. Intensive Care Med 27:269–275

    Article  CAS  PubMed  Google Scholar 

  57. Douzinas EE, Livaditi O, Andrianakis I et al (2008) The effect of hypoxemic resuscitation from hemorrhagic shock on blood pressure restoration and on oxidative and inflammatory responses. Intensive Care Med 34:1133–1141

    Article  CAS  PubMed  Google Scholar 

  58. Poli G, Leonarduzzi G, Biasi F et al (2004) Oxidative stress and cell signalling. Curr Med Chem 11:1163–1182

    Article  CAS  PubMed  Google Scholar 

  59. Davies KJ (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem 262:9895–9901

    Article  CAS  PubMed  Google Scholar 

  60. Ambler SK, Hodges YK, Jones GM et al (2008) Prolonged administration of a dithiol antioxidant protects against ventricular remodeling due to ischemia-reperfusion in mice. Am J Physiol Heart Circ Physiol 295(3):H1303–H1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dare AJ, Bolton EA, Pettigrew GJ et al (2015) Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol 5:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Song J, Park J, Oh Y et al (2015) Glutathione suppresses cerebral infarct volume and cell death after ischemic injury: involvement of FOXO3 inactivation and Bcl2 expression. Oxidative Med Cell Longev 2015:426069

    Google Scholar 

  63. Zhang Z, Yan J, Taheri S et al (2014) Hypoxia-inducible factor 1 contributes to N-acetylcysteine’s protection in stroke. Free Radic Biol Med 68:8–21

    Article  CAS  PubMed  Google Scholar 

  64. Chen CL, Zheng H, Xuan Y et al (2015) The cardioprotective effect of hypoxic and ischemic preconditioning in dogs with myocardial ischemia-reperfusion injury using a double-bypass model. Life Sci 141:25–31

    Article  CAS  PubMed  Google Scholar 

  65. Ji YY, Wang ZD, Wang SF et al (2015) Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J Gastroenterol 21(26):8081–8088

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lu MJ, Chen YS, Huang HS et al (2014) Hypoxic preconditioning protects rat hearts against ischemia-reperfusion injury via the arachidonate12-lipoxygenase/transient receptor potential vanilloid 1 pathway. Basic Res Cardiol 109(4):414–428

    Article  PubMed  CAS  Google Scholar 

  67. Chouker A, Ohta A, Martignoni A et al (2012) In vivo hypoxic preconditioning protects from warm liver ischemia-reperfusion injury through the adenosine A2B receptor. Transplantation 94(9):894–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qiao S, Mao X, Wang Y et al (2016) Remifentanil preconditioning reduces postischemic myocardial infarction and improves left ventricular performance via activation of the Janus activated kinase-2/signal transducers and activators of Transcription-3 signal pathway and subsequent inhibition of glycogen synthase kinase-3beta in rats. Crit Care Med 44(3):e131–e145

    Article  CAS  PubMed  Google Scholar 

  69. Savvanis S, Nastos C, Tasoulis MK et al (2014) Sildenafil attenuates hepatocellular injury after liver ischemia reperfusion in rats: a preliminary study. Oxidative Med Cell Longev 2014:161942

    Article  CAS  Google Scholar 

  70. Mahfoudh-Boussaid A, Zaouali MA, Hadj-Ayed K et al (2012) Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1alpha in ischemic kidney: the role of nitric oxide. J Biomed Sci 19:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu X, Yang Z, Yang M et al (2014) Remote ischemic preconditioning mitigates myocardial and neurological dysfunction via K(ATP) channel activation in a rat model of hemorrhagic shock. Shock 42(3):228–233

    Article  CAS  PubMed  Google Scholar 

  72. Cai Z, Luo W, Zhan H et al (2013) Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. Proc Natl Acad Sci U S A 110(43):17462–17467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abu-Amara M, Yang SY, Quaglia A et al (2012) The hepatic soluble guanylyl cyclase-cyclic guanosine monophosphate pathway mediates the protection of remote ischemic preconditioning on the microcirculation in liver ischemia-reperfusion injury. Transplantation 93(9):880–886

    Article  CAS  PubMed  Google Scholar 

  74. Frohlich GM, Meier P, White SK et al (2013) Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J 34(23):1714–1722

    Article  PubMed  CAS  Google Scholar 

  75. Abu-Amara M, Gurusamy K, Hori S et al (2010) Systematic review of randomized controlled trials of pharmacological interventions to reduce ischaemia-reperfusion injury in elective liver resection with vascular occlusion. HPB (Oxford) 12(1):4–14

    Article  Google Scholar 

  76. O’Neill S, Leuschner S, McNally SJ et al (2013) Meta-analysis of ischaemic preconditioning for liver resections. Br J Surg 100(13):1689–1700

    Article  PubMed  Google Scholar 

  77. Nicholson ML, Pattenden CJ, Barlow AD et al (2015) A double blind randomized clinical trial of remote ischemic conditioning in live donor renal transplantation. Medicine 94(31):e1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Meybohm P, Bein B, Brosteanu O et al (2015) A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med 373(15):1397–1407

    Article  CAS  PubMed  Google Scholar 

  79. Hausenloy DJ, Candilio L, Evans R et al (2015) Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373(15):1408–1417

    Article  CAS  PubMed  Google Scholar 

  80. Douzinas EE, Patsouris E, Kypriades E et al (2001) Hypoxemic reperfusion ameliorates the histopathologic changes in the brain after a severe global cerebral ischemic insult. Intensive Care Med 27:905–910

    Article  CAS  PubMed  Google Scholar 

  81. Ulatowski JA, Kirsch JR, Traystman RJ (1994) Hypoxic reperfusion after ischemia in swine does not improve acute brain recovery. Am J Physiol 267 (Heart Circ Physiol 36):H1880-H1887

    Article  CAS  Google Scholar 

  82. Mink RB, Dutka AJ (1995) Hyperbaric oxygen after global cerebral ischemia in rabbits does not promote brain lipid peroxidation. Crit Care Med 23:1398–1404

    Article  CAS  PubMed  Google Scholar 

  83. Mickel HS, Vaishnav YN, Kempski O et al (1987) Breathing 100% oxygen after global brain ischemia in Mongolian gerbils results in increased lipid peroxidation and increased mortality. Stroke 18:426–430

    Article  CAS  PubMed  Google Scholar 

  84. Zwemer CF, Whitesall SE, D’Alecy LG (1994) Cardiopulmonary-cerebral resuscitation with 100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic cardiac arrest on dogs. Resuscitation 27:159–170

    Article  CAS  PubMed  Google Scholar 

  85. Liu Y, Rosenthal RE, Haywood Y et al (1998) Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke 29:1679–1686

    Article  CAS  PubMed  Google Scholar 

  86. Douzinas EE, Kollias S, Tiniakos D et al (2004) Hypoxemic reperfusion after 120 mins of intestinal ischemia attenuates the histopathologic and inflammatory response. Crit Care Med 32:2279–2283

    Article  PubMed  Google Scholar 

  87. Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Phys Cell Physiol 282:C227–C241

    Article  CAS  Google Scholar 

  88. Roberts I, Alderson P, Bunn F et al (2004) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev CD000567

    Google Scholar 

  89. Bickell WH, Wall MJ Jr, Pepe PE et al (1994) Immediate versus delayed resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331:1105–1109

    Article  CAS  PubMed  Google Scholar 

  90. Cavanaugh BP, Meyer LJ (2005) Normalizing physiological variables in acute illness: five reasons for caution. Intensive Care Med 31:1161–1111

    Article  Google Scholar 

  91. Roberts I, Evans P, Bunn F et al (2001) Is the normalization of blood pressure in bleeding trauma patients harmful? Lancet 357:385–387

    Article  CAS  PubMed  Google Scholar 

  92. Stern SA (2001) Low-volume fluid resuscitation for presumed hemorrhagic shock: helpful or harmful? Curr Opin Crit Care 7:422–430

    Article  CAS  PubMed  Google Scholar 

  93. Shafi S, Kauder D (2004) Fluid resuscitation and blood transfusion in patients with polytrauma. Clin Orthop 422:37–42

    Article  Google Scholar 

  94. Alan HB (2011) Advances in resuscitation strategies. Int J Surg 9:5–12

    Article  Google Scholar 

  95. Gurfinkel V, Poggetti RS, Fontes B et al (2003) Hypertonic saline improves tissue oxygenation and reduces systemic and pulmonary inflammatory response caused by hemorrhagic shock. J Trauma 54:1137–1145

    Article  CAS  PubMed  Google Scholar 

  96. Douzinas EE, Betrosian A, Giamarellos-Bourboulis EJ et al (2011) Hypoxemic resuscitation from hemorrhagic shock prevents lung injury and attenuates oxidative response and IL-8 overexpression. Free Radic Biol Med 50:245–253

    Article  CAS  PubMed  Google Scholar 

  97. Sauaia A, Moore FA, Moore EE et al (1996) Early risk factors for postinjury multiple organ failure. World J Surg 20:392–400

    Article  CAS  PubMed  Google Scholar 

  98. Abraham E, Carmody A, Shenkar R et al (2000) Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Phys Lung Cell Mol Phys 279:L1137–L1145

    CAS  Google Scholar 

  99. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    Article  CAS  PubMed  Google Scholar 

  100. De Perrot M, Sekine Y, Fischer S et al (2002) Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med 165:211–215

    Article  PubMed  Google Scholar 

  101. Mitchell GB, Albright BN, Caswell JL (2003) Effect of interleukin-8 and granulocyte colony-stimulating factor on priming and activation of bovine neutrophils. Infect Immun 71:1643–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Douzinas EE, Orfanos SE, Livaditi O et al (2009) Hypoxemic resuscitation prevents pulmonary capillary endothelial dysfunction induced by normoxemic resuscitation from hemorrhagic shock. Crit Care Med 37:869–875

    Article  CAS  PubMed  Google Scholar 

  103. Douzinas EE, Livaditi O, Tasoulis MK et al (2012) Nitrosative and oxidative stresses contribute to post-ischemic liver injury following severe hemorrhagic shock: the role of hypoxemic resuscitation. PLoS One 7(3):e32968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Douzinas, E.E., Apeiranthitis, A. (2019). Basic Mechanisms of Ischemia/Reperfusion Injury Leading to Cellular and Tissue Damage: Therapeutic Implications. In: Chakraborti, S., Dhalla, N., Dikshit, M., Ganguly, N. (eds) Modulation of Oxidative Stress in Heart Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8946-7_27

Download citation

Publish with us

Policies and ethics