Skip to main content

DVAE: Deep Variational Auto-Encoders for Denoising Retinal Fundus Image

  • Chapter
  • First Online:
Hybrid Machine Intelligence for Medical Image Analysis

Part of the book series: Studies in Computational Intelligence ((SCI,volume 841))

Abstract

Deep learning performs as a computational tool with various potential utilities in ophthalmology. Retinal infections of the eye need to analyze small retinal vessels, microaneurysms, and exudates in the diagnosis of retinal diseases. Due to the appearance of various noises in the fundus images, the retinal vasculature is too complicated to be analyzed for retinal conditions. In this work, we have focused on the field of advanced deep learning in which plethora of architecture is available with the increase in dimension and flexibility of the retinal fundus images. Removal of noise is an essential part to better visibility of noisy fundus and thus a deep learning method for degraded retinal fundus image restoration scheme has been suggested in this investigation. A deep convolutional denoising auto-encoder method based on total variational multi-norm loss function minimization with batch normalization approach has been introduced for restoration of the fundus. The proposed scheme is utilized to restore the perceptible structural details of fundus as well as to decrease the noise level. Moreover, the speed of the network for target noisy images is faster compared to that of other models after fine-tuning of the network with the dropout mechanism. The retinal image databases such as DRIVE, STARE, and DIARETDB1 have been adopted to assess image denoising effects. Our approach to increase the visibility of fundus images by noise reduction through a deep training method has significantly delivered better performance without losing image details along with having fast convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sonka, M., Hlavac, V., Boyle, R.: Image processing analysis and machine vision. Thomson Learn (2001)

    Google Scholar 

  2. McBee, M.P., et al.: Deep Learning in Radiology. Elsevier, Academic Radiology (2018)

    Article  Google Scholar 

  3. Moraru, L., Obreja, C.D., Dey, N., Ashour, A.S.: Dempster-shafer fusion for effective retinal vessels diameter measurement. Soft Comput. Based Med. Image Anal. 149-160 (2018)

    Google Scholar 

  4. Chakraborty, S., Mukherjee, A., Chatterjee, D., Maji, P., Acharjee, S., Dey, N.: A semi-automated system for optic nerve head segmentation in digital retinal images. In: 2014 International Conference on Information Technology (ICIT), IEEE (2014)

    Google Scholar 

  5. Zhang, Y., Tian, X., Ren, P.: An adaptive bilateral filter based framework for image denoising. Neurocomputing (2014)

    Google Scholar 

  6. Zhang, Y., Zhang, W.H., Chen, H., Yang, N.L., Li, T.Y., Zhou, J.L.: Few-view image reconstruction combining total variation and a high-order norm. Int. J. Imaging Syst. Technol. 23(3), 249–255 (2013)

    Article  Google Scholar 

  7. Hang, Z., Gallo, O., Frosio, I., Kautz, J.: Loss Functions for Image Restoration with Neural Networks. IEEE Transactions on Computational Imaging, ACM, arxiv.org/abs/1511.08861 (2016)

  8. Abramoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010)

    Article  Google Scholar 

  9. Ghosh, S.K., Ghosh, A., Chakrabarti, A.: VEA: Vessels extraction algorithm and a novel wavelet analyser for diabetic retinopathy detection. Int. Journal of Image and Graphics-Worldscientific 18(2) (2018)

    Google Scholar 

  10. Singer, D.E., Nathan, D.M., Fogel, H.A., Schachat, A.P.: Screening for diabetic retinopathy. Ann. Intern. Med. 116, 660–671 (1992)

    Article  Google Scholar 

  11. Kanski JJ, Bowling B (2012) Synopsis of Clinical Ophthalmology. Elsevier Health Sci

    Google Scholar 

  12. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  13. Goodfellow, I., Bengio, Y., et al.: Deep Learning. MIT Press (2016)

    Google Scholar 

  14. Chen, Y., Shi, L., Feng, O., Yang, J., Shu, H., et al.: Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans. Med. Imaging 33(12), 2271–2292 (2014)

    Article  Google Scholar 

  15. Zhang, Y., Wang, Y., et al.: Statistical iterative reconstruction using adaptive fractional order regularization. Biomed. Opt. Exp. 7(3), 1015–1029 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, Z., et al.: Adaptive nonlocal means filtering based on local noise level for CT denoising. Med. Phys. 41(1) (2014)

    Article  Google Scholar 

  17. Huang, Z.K., Li, Z.H.: Comparison of different image denoising algorithms for Chinese calligraphy images. Neurocomputing 188, 102–112 (2016)

    Article  Google Scholar 

  18. Gondara, L.: Medical image denoising using convolutional denoising autoencoders. Pro. of the IEEE Int. Con. Data Mining Workshops (ICDMW 2016) pp. 241–246 (2016)

    Google Scholar 

  19. Doersch, C.: Tutorial on variational autoencoders. Mach. Learn. arxiv.org/abs/1606.05908 (2016)

  20. Im, D.J., Ahn, S., Memisevic, R., Bengio, Y.: Denoising Criterion for Variational auto-encoding framework. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) arXiv:1511.06406 (2017)

  21. Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A.: Variational autoencoder for deep learning of images, Labels and Captions. In: 30th Conference on Neural Information Processing Systems (NIPS 2016), arXiv:1609.08976 (2016)

  22. Vincent, P.: A connection between score matching and denoising autoencoders. Neural Comput. 23(7), 1661–1674 (2011)

    Article  MathSciNet  Google Scholar 

  23. Mao, X.J., Shen, C., Yang, Y.B.: Image restoration using convolutional autoencoders with symmetric skip connections. In: Proceeding of NIPS (2016)

    Google Scholar 

  24. Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P.: Image quality assessment: from error visibility to structural similarity. IEEE Tran. of Image Processing 13(4) (2004)

    Article  Google Scholar 

  25. Niemeijer, M., Staal, J.J., Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database In: Fitzpatrick, J.M., Sonka M. (eds.), SPIE Medical Imaging, SPIE 5370, pp. 648-656 (2004)

    Google Scholar 

  26. Available from: https://www.isi.uu.nl/Research/Databases/DRIVE/

  27. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  28. Available from: http://cecas.clemson.edu/~ahoover/stare/

  29. Kalesnykiene, V., Kamarainen, J. K., Voutilainen, R., Pietil, J., Klviinen, H., Uusitalo, H.: DIARETDB1 diabetic retinopathy database and evaluation protocol (2007)

    Google Scholar 

  30. Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimedia 17(1), 50–63 (2015)

    Article  Google Scholar 

  31. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Kr Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, B., Ghosh, S.K., Ghosh, A. (2020). DVAE: Deep Variational Auto-Encoders for Denoising Retinal Fundus Image. In: Bhattacharyya, S., Konar, D., Platos, J., Kar, C., Sharma, K. (eds) Hybrid Machine Intelligence for Medical Image Analysis. Studies in Computational Intelligence, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-8930-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8930-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8929-0

  • Online ISBN: 978-981-13-8930-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics