Skip to main content

Perception of Stress Environment in Plants

  • Chapter
  • First Online:
Sensory Biology of Plants

Abstract

Any unfavourable condition or constituent that upsets or blocks a plant’s metabolism, growth, or development can be termed as stress. As plants lack the ability to escape from these adverse situations, they have evolved elaborate mechanisms to perceive and respond to them. Stress signaling has, therefore, taken a central role in growth and development of plants as they have to endure such situations more frequently during their life cycle. Perception of stress is a critical component of stress signaling which governs the ultimate fate of plant survival. Plasma membrane serves as the primary site for sensing various environmental stimuli through membrane receptors and transduces them via second messengers to downstream intra- and intercellular signaling networks. Further, phytohormones which are considered as plant growth regulators also play vital roles in stress adaptation. Plants have evolved intricate hormone signaling networks which can crosstalk with other stress mechanisms making them ideal candidates for mediating defence responses. Here, we have presented an overview of stress, its perception and transduction in plants, also highlighting important points of interactions between various stress signaling mechanisms. We propose that stress signaling is a highly complex phenomenon where much is still needed to be deciphered to unlock the secret of robust plant defence responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Diwan H, Abrol YP (2009) Global climate change, stress and plant productivity. In: Pareek A, Sopory S, Bohnert H (eds) Abiotic stress adaptation in plants. Springer, Dordrecht, pp 503–521

    Chapter  Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342

    Article  CAS  PubMed  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Bui LT, Giuntoli B, Kosmacz M, Parlanti S, Licausi F (2015) Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci 236:37–43

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife 3. doi: 10.7554/eLife.03766

    Google Scholar 

  • Cesari S (2018) Multiple strategies for pathogen perception by plant immune receptors. New Phytol 219:17–24

    Article  CAS  PubMed  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  PubMed  Google Scholar 

  • Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung MK, Meixner AJ, Hooley R, Neill SJ (2008) The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS One 3:e2491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • Guo X, Liu D, Chong K (2018) Cold signaling in plants: insights into mechanisms and regulation. J Integr Plant Biol 60:745 60: 745–745 60: 756

    PubMed  Google Scholar 

  • Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2018) Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Environ 41:1186–1200

    Article  CAS  PubMed  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104:12217–12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong CY, Chao YY, Yang MY, Cheng SY, Cho SC, Kao CH (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320:103–115

    Article  CAS  Google Scholar 

  • Hoque TS, Okuma E, Uraji M, Furuichi T, Sasaki T, Hoque MA, Nakamura Y, Murata Y (2012) Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K+ channel activity in Arabidopsis. Biosci Biotechnol Biochem 76:617–619

    Article  CAS  PubMed  Google Scholar 

  • Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon J, Kim NY, Kim S, Kang NY, Nova’k O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JC, Schafer E, Jaeger KE, Wigge PA (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Kushwaha HR, Mustafiz A, Pareek A, Sopory SK, Singla-Pareek SL (2015) Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Front Plant Sci 6:682

    PubMed  PubMed Central  Google Scholar 

  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K (2018) Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361:181–186

    Article  CAS  PubMed  Google Scholar 

  • Larcher W (1987) Streß bei Pflanzen Naturwissenschaften 74:158–167

    Article  CAS  Google Scholar 

  • Lee KW, Chen PW, Lu CA, Chen S, Ho TH, Yu SM (2009) Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal 2:ra61

    PubMed  Google Scholar 

  • Lee SC, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, Oosumi T, Voesenek LA, Bailey-Serres J (2011) Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytol 190:457–471

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1988) In vivo chlorophyll fluorescence as a tool for stress detection in plants. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence. Kluwer Academic, Dordrecht, pp 129–142

    Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    Article  CAS  Google Scholar 

  • Loreti E, Yamaguchi J, Alpi A, Perata P (2003) Sugar modulation of α-amylase genes under anoxia. Ann Bot 91:143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis thaliana roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Albanesi D, Alzari PM, de Mendoza D (2009) Functional in vitro assembly of the integral membrane bacterial thermosensor DesK. Protein Expr Purif 66:39–45

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto TK, Ellsmore AJ, Cessna SG, Low PS, Pardo JM, Bressan RA, Hasegawa PM (2002) An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J Biol Chem 277:33075–33080

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miquel M, James D Jr, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci U S A 90:6208–6212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:21–23

    Article  CAS  Google Scholar 

  • Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006) Whole genome analysis of Oryza sativa L. reveals similar architecture of two-component-signaling machinery with Arabidopsis. Plant Physiol 142:380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo-Gómez S (2013) Abiotic and biotic stress tolerance in plants. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, New Delhi, pp 1–20

    Google Scholar 

  • Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajid M, Rashid B, Ali Q (2018) Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions. Biol Plant 62:409

    Article  CAS  Google Scholar 

  • Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27:1–12

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, van Veen H, Yeung E, Voesenek LACJ (2018) Signal dynamics and interactions during flooding stress. Plant Physiol 176:1106–1117

    Article  CAS  PubMed  Google Scholar 

  • Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32

    Article  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Ansari MW, Pareek A, Singla-Pareek SL (2008) Raising salinity tolerant rice: recent progress and future perspectives. Physiol Mol Biol Plants 14:137–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G, Mittler R, Harper JF (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161:1010–1020

    Article  CAS  PubMed  Google Scholar 

  • Upreti KK, Sharma M (2016) Role of plant growth regulators in abiotic stress tolerance. In: Srinivasa Rao NK, Shivashankara KS Laxman RH (eds) Abiotic stress physiology of horticultural crops. Springer, New Delhi, pp 19–46

    Chapter  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vashisht D, Hesselink A, Pierik R, Ammerlaan JM, Bailey-Serres J, Visser EJ, Pedersen O, Van Zanten M, Vreugdenhil D, Jamar DC, Voesenek LA (2011) Natural variation of submergence tolerance among Arabidopsis thaliana accessions. New Phytol 190:299–310

    Article  CAS  PubMed  Google Scholar 

  • Ve’zina LP, Ferullo JM, Laliberté G, Laberge S, Willemot C (1997) Chilling and freezing. In: MNV P (ed) Plant ecophysiology. Wiley, New York, pp 61–100

    Google Scholar 

  • Voesenek LACJ, Bailey-Serres J (2013) Flooding tolerance: O2 sensing and survival strategies. Curr Opin Plant Biol 16:647–653

    Article  CAS  PubMed  Google Scholar 

  • Voesenek LACJ, Pierik R, Sasidharan R (2015) Plant life without ethylene. Trends Plant Sci 20:1–3

    Article  CAS  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  CAS  PubMed  Google Scholar 

  • Vu LD, Gevaert K, De Smet I (2019) Feeling the heat: searching for plant Thermosensors. Trends Plant Sci 24:210–219

    Article  CAS  PubMed  Google Scholar 

  • Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CH, Derevnina L, Kamoun S (2018) Receptor networks underpin plant immunity. Science 360:1300–1301

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci U S A 102:16107–16112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Ding Y, Jiang Q, Wang F, Sun J, Zhu C (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36:235–242

    Article  CAS  PubMed  Google Scholar 

  • Yeung E, van Veen H, Vashisht D, Paiva AL, Hummel M, Rankenberg T, Steffens B, Steffen-Heins A, Sauter M, de Vries M, Schuurink RC (2018) A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 115:E6085–E6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149:1773–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Charanpreet Kaur acknowledges the DST-INSPIRE Faculty Award (IFA-14/LSPA-24) received from the Department of Science and Technology (DST), Government of India. SLS-P and AP acknowledge the grant received from NWO Indo-Netherlands project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneh Lata Singla-Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, C., Pareek, A., Singla-Pareek, S.L. (2019). Perception of Stress Environment in Plants. In: Sopory, S. (eds) Sensory Biology of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-8922-1_7

Download citation

Publish with us

Policies and ethics