Skip to main content

Electric Signaling and Long-Distance Communication in Plants

  • Chapter
  • First Online:
Sensory Biology of Plants

Abstract

Plants seem to have different modes of cell-to-cell and long-distance communication. The transmission of information involves phytohormones, organic transmitters and movement of macromolecules. There is also substantial evidence on the existence of electric signals in higher plants that converge on contact nodes similar to the immunological synapses found in animals. The origin, nature and mechanism of conduction of these signals are largely unknown. It was suggested that electrical potentials play an important role in inter- and intracellular cross talk; however, the mechanism through which plants decipher and act upon these signals is also a black box. Here we have covered the historical purview of electrical signaling in plants including the nature of electrical signals, mechanism of electrical conduction, and pathways for transmission. A brief description of other mobile molecular and cellular transmitters operative in long-distance communication is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adie BA, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Assmann SM, Simoncini L, Schroeder JI (1985) Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318:285–287

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Balla J, Kalousek P, Reinöhl V, Friml J, Procházka S (2011) Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J 65:571–577

    Article  CAS  PubMed  Google Scholar 

  • Baluška F (2003) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 13:282–285

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton – plasma membrane – cell wall continuum: emerging links revisited. Plant Physiol 133:482–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command centres: the unique “brain-like” status of the root apex transition zone. Biologia 59:7–19

    Google Scholar 

  • Baluška F, Volkmann D, Menzel D (2005) Plant synapses: actin based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible W-R (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow PW, Baluška F (2004) Polarity in roots. In: Lindsey K (ed) Polarity in plants. Blackwell, Oxford, pp 192–241

    Google Scholar 

  • Beilby MJ (1984) Calcium and plant action potentials. Plant Cell Environ 7:415–412

    Article  CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (1996) Turgor regulation in Lamprothamnium papulosum. I I/V analysis and pharmacological dissection of the hypotonic effect. Plant Cell Environ 19:837–847

    Article  Google Scholar 

  • Beilby MJ, Cherry CA, Shepherd VA (1999) Dual turgor regulation response to hypotonic stress in Lamprothamnium papulosum. Plant Cell Environ 22:347–361

    Article  CAS  Google Scholar 

  • Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, Ankenbrand M, Van de Weyer A-L, Krol E, Al-Rasheid KA et al (2016) Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res 26:812–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard C (1878) La sciences experimentale. Hachette Livre-BNF, Paris, pp 218–236

    Google Scholar 

  • Beveridge CA (2006) Advances in the control of axillary bud outgrowth: sending a message. Curr Opin Plant Biol 9:35–40

    Article  CAS  PubMed  Google Scholar 

  • Biddington NL, Dearman AS (1985) The effect of mechanically induced stress on the growth of cauliflower, lettuce and celery seedlings. Ann Bot 55:109–119

    Article  Google Scholar 

  • Blatt FJ (1974) Temperature dependence of the action potential in Nitella flexilis. Biochim Biophys Acta 339:382–389

    Article  CAS  PubMed  Google Scholar 

  • Böhm J, Scherzer S, Krol E, Kreuzer I, Meyer K, Lorey C, Mueller TD, Shabala L, Monte I, Solano R et al (2016) The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Curr Biol 26:286–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bose JC (1913) Researches on irritability of plants. Longmans, Green and Co, London

    Book  Google Scholar 

  • Bose JC (1926) The nervous mechanisms of plants. Longmans, Green and Co, London

    Book  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    Article  CAS  PubMed  Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylicacid, and ethylene precursor, in water logged tomato plants. Plant Physiol 65:322–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner ED, Stevenson DW, Twigg RW (2003) Cycads: evolutionary innovations and the role of plant-derived neurotoxins. Trends Plant Sci 8:446–452

    Article  CAS  PubMed  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosnan CA, Voinnet O (2011) Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol 14:580–587

    Article  CAS  PubMed  Google Scholar 

  • Brown WH, Sharp LW (1910) The closing response in Dionaea. Bot Gaz 49:290–302

    Article  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    Article  CAS  PubMed  Google Scholar 

  • Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burdon-Sanderson J (1873) Note on the electrical phenomenon which accompany stimulation of the leaf of Dionaea muscipula. Proc Roy Soc London 21:495–496

    Article  Google Scholar 

  • Capone R, Tiwari BS, Levine A (2004) Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis. Plant Physiol Biochem 42:425–428

    Article  CAS  PubMed  Google Scholar 

  • Castillejo C, Pelaz S (2008 Sep 9) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol 18(17):1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Catalá R, Medina J, Salinas J (2011) Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc Natl Acad Sci U S A 108:16475–16480

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X (2016) Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 26:640–646

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    Article  CAS  PubMed  Google Scholar 

  • Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC (2009) Pattern formation via small RNA mobility. Genes Dev 23:549–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman HA (1986) Chloride currents in Chara—a patch-clamp study. J Membr Biol 93:55–61

    Article  CAS  Google Scholar 

  • Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–30888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrave DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153

    Google Scholar 

  • Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller DMA, Leyser O (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905–2913

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1966) The power of movements in plants. Da Capo Press, New York

    Google Scholar 

  • Davies E (1987) Action potentials as multifunctional signals in plants, a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Enviorn 10:623–631

    Article  Google Scholar 

  • De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359

    Article  PubMed  CAS  Google Scholar 

  • Dietrich P, Sanders D, Hedrich R (2001) The role of ion channels in light dependent stomatal opening. J Exp Bot 52:1959–1967

    Article  CAS  PubMed  Google Scholar 

  • Dinant S, Lemoine R (2010) The phloem pathway: new issues and old debates. C R Biol 333:307–319

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  CAS  PubMed  Google Scholar 

  • Dziubinska H, Paszewski A, Trebacz K, Zawadzki T (1983) The effect of excitation on the rate of respiration in the liverwort Conocephalum conicu. Physiol Plant 75:417–423

    Article  Google Scholar 

  • Dziubinska H, Filek M, Koscielniak J, Trebacz K (2003) Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant non-stimulated leaves of Vicia faba minor seedlings. J Plant Physiol 160:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Ellison A, Gotelli N (2009) Energetics and the evolution of carnivorous plants–Darwin’s ‘most wonderful plants in the world’. J Exp Bot 60(1):19–42

    Article  CAS  PubMed  Google Scholar 

  • Eschrich W, Fromm J, Evert RF (1988) Transmission of electrical signals in sieve tubes of zucchini plants. Bot Acta 101:327–331

    Article  Google Scholar 

  • Evans MJ, Morris RJ (2017) Chemical agents transported by xylem mass flow propagate variation potentials. Plant J 91:1029–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findlay GP (1961) Voltage-clamp experiments with Nitella. Nature 191:812–814

    Article  Google Scholar 

  • Flokova K, Tarkowska D, Miersch O, Strnad M, Wasternack C, Novak O (2014) UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105:147–157

    Article  CAS  PubMed  Google Scholar 

  • Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547

    Article  CAS  PubMed  Google Scholar 

  • Foster TM, Lough TJ, Emerson SJ, Lee RH, Bowman JL, Forster RLS, Lucas WJ (2002) A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell 14:1497–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster TP, Melancon JM, Baines JD, Kousoulas KG (2004) The herpes simplex virus type 1 UL20 protein modulates membrane fusion events during cytoplasmic virion morphogenesis and virus-induced cell fusion. J Virol 78:5347–5357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frachisse JM, Desbiez MO, Champagnat P, Thellier M (1985) Transmission of a traumatic signal via a wave of electric depolarization, and induction of correlations between the cotyledonary buds in Bidens pilosus. Physiol Plant 64:48–52

    Article  Google Scholar 

  • Friml J (2003) Auxin transport – shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  CAS  PubMed  Google Scholar 

  • Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Physiol Plant 83:529–533

    Article  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Article  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  CAS  PubMed  Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot 44:1119–1125

    Article  Google Scholar 

  • Fromm J, Hajirezaei M, Wilke I (1995) The biochemical response of electrical signalling in the reproductive system of Hibiscus plants. Plant Physiol 109:375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaupels F, Furch AC, Will T, Mur LA, Kogel KH, van Bel AJ (2008) Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytol 178:634–646

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy A, Karpinski S et al (2016) ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazer I, Orion D, Apelbaum A (1984) Interrelationships between ethylene production, gall formation, and root-knot nematode development in tomato plants infected with Meloidogyne javanica. J Nematol 15:539–544

    Google Scholar 

  • Glebicki K, Hejnowicz Z, Pijanowski A (1989) Induced fluctuations of electric potentials in the apoplast of leaves. Planta 180:1–4

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Gradmann D (1976) “Metabolic” action potentials in Acetabularia. J Membr Biol 29:23–45

    Article  CAS  PubMed  Google Scholar 

  • Grémiaux A, Yokawa K, Mancuso S, Baluška F (2014) Plant anesthesia supports similarities between animals and plants: Claude Bernard’s forgotten studies. Plant Signal Behav 9(1):e27886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruntman M, Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. Proc Natl Acad Sci U S A 101:3863–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunar II, Sinyukhin AM (1963) Functional significance of action currents affecting the gas exchange of higher plants. Sov Plant Physiol 10:219–226

    Google Scholar 

  • Haake O (1892) Über die ursachen electrischer ströme in pflanzen. Flora 75:455–487

    Google Scholar 

  • Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J 42:49–68

    Article  CAS  PubMed  Google Scholar 

  • Hebbar KB, Sinha SK (2000) Surface electrical potential changes of salt tolerant and sensitive wheat varieties differ with sodium chloride treatment. Curr Sci 78:76–78

    CAS  Google Scholar 

  • Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9:3889–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrich R, Salvador-Recatalà V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends Plant Sci 21:376–387

    Article  CAS  PubMed  Google Scholar 

  • Herde O, Cortés OP, Wasternack C, Willmitzer L, Fisahn J (1999) Electric signaling and Pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol 119:213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hlaváčková V, Krchňák P, Nauš J, Novák O, Špundová M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244

    Article  PubMed  CAS  Google Scholar 

  • Hodick D, Sievers A (1988) The action potential of Dionaea muscipula Ellis. Planta 174:8–18

    Article  CAS  PubMed  Google Scholar 

  • Hodick D, Sievers A (1989) On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179:32–42

    Article  CAS  PubMed  Google Scholar 

  • Hope AB, Walker NA (1975) The physiology of giant algal cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Iijima T, Sibaoka T (1981) Action potential in the trap-lobes of Aldrovanda vesiculosa. Plant Cell Physiol 22:1595–1601

    Article  Google Scholar 

  • Jackson SD (1999) Multiple signaling pathways control tuber induction in potato. Plant Physiol 119:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson SL (1965) Receptor response in Venus fly-trap. J Gen Physiol 49:117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe MJ (1973) Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta 114:143–157

    Article  CAS  PubMed  Google Scholar 

  • Johannes E, Ermolayeva E, Sanders D (1997) Red light-induced membrane potential transients in the moss Physcomitrella patens: ion channel interaction in phytochrome signalling. J Exp Bot 48:599–608

    Article  CAS  PubMed  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    Article  CAS  PubMed  Google Scholar 

  • Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428:81–84

    Article  CAS  PubMed  Google Scholar 

  • Kiep V, Vadassery J, Lattke J, Maaß JP, Boland W, Peiter E, Mithöfer A (2015) Systemic cytosolic Ca(2+) elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol 207:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Kikuyama M, Tazawa M (1998) Temporal relationship between action potential and Ca2+ transient in characean cells. Plant Cell Physiol 39:1359–1366

    Article  CAS  Google Scholar 

  • Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84

    Article  CAS  PubMed  Google Scholar 

  • Kirst GO, Janssen MIB, Winter U (1988) Ecophysiological investigations of Chara vulgaris L. grown in a brackish water lake: ionic changes and accumulation of sucrose in the vacuolar sap during sexual reproduction. Plant Cell Environ 11:55–61

    Article  CAS  Google Scholar 

  • Knoblauch M, Peters WS (2010) Munch, morphology, microfluidics—our structural problem with the phloem. Plant Cell Environ 33:1439–1452

    PubMed  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M (1991) Isolation of higher plant developmental mutants. Symp Soc Exp Biol 45:1–19

    CAS  PubMed  Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2003) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722

    Article  Google Scholar 

  • Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pèrez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MC et al (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci U S A 108:5891–5896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam H-G, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi GM (2001) On the identity of plant glutamate receptors. Science 292:1486–1487

    Article  CAS  PubMed  Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Ha JH, Kim SG, Choi HK, Kim ZH, Han YJ, Kim JI, Oh Y, Fragoso V, Shin K, Hyeon T, Choi HG, Oh KH, Baldwin IT, Park CM (2016) Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal 9:RA106

    Article  PubMed  CAS  Google Scholar 

  • Libiaková M, Floková K, Novák O, Slováková L, Pavlovič A (2014) Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap Dionaea muscipula Ellis is regulated by different stimuli from prey through jasmonates. PLoS One 9:e104424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim GH, Shine MB, de Lorenzo L, Yu K, Cui W, Navarre D, Hunt AG, Lee JY, Kachroo A, Kachroo P (2011) Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 19:541–549

    Article  CAS  Google Scholar 

  • Liu Q, Chen YQ (2009) Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun 384:1–5

    Article  CAS  PubMed  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  CAS  PubMed  Google Scholar 

  • Lunevsky VZ, Zheralova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J Membr Biol 72:43–58

    Article  Google Scholar 

  • Maffei ME, Mithöffer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12:310–316

    Article  CAS  PubMed  Google Scholar 

  • Malone M (1996) Rapid, long-distance signal transmission in higher plants. Adv Bot Res 22:163–228

    Article  CAS  Google Scholar 

  • Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61

    Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci U S A 84:2297–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu J, Warthmann N, Kuttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Melnyk CW, Molnar A, Bassett A, Baulcombe DC (2011) Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr Biol 21:1678–1683

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling Δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran N, Ehrenstein G, Iwasa K, Bare C, Mischke C (1984) Ion channels in plasmalemma of wheat protoplasts. Science 226:835–838

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signals. Nature 500:422–426

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Mithöfer A, Kombrink E, Boland W, Hamamoto S, Uozumi N, Tohma K, Ueda M (2011) 12-Hydroxyjasmonic acid glucoside is a COI1-JAZindependent activator of leaf-closing movement in Samanea saman. Plant Physiol 155:1226–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman IA (1981) Rapid electric responses of oats to phytochrome show membrane processes unrelated to pelletabilty. Plant Physiol 68:1494–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols R, Frost CE (1985) Wound-induced production of 1-aminocyclopropane-1-carboxylic acid and accelerated senescence of Petunia corollas. Sci Hortic 26:47–55

    Article  CAS  Google Scholar 

  • Nogueira FT, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MC (2009) Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet 5:e1000320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9:496–502

    Article  CAS  PubMed  Google Scholar 

  • Palauqui JC, Elmayan T, Pollien JM, Vaucheret H (1997) Systemic acquired silencing: transgene-specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 1617:4738–4745

    Article  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541–1555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paszewski A, Zawadzki T (1994) Action potentials in Lupinus angustifolius L. shoots. J Exp Bot 25:1097–1103

    Article  Google Scholar 

  • Peña-Cortés H, Willmitzer L, Sanchez-Serrano JJ (1991) Abscisic acid mediates wound induction but not developmental-specific expression of the proteinase inhibitor II gene family. Plant Cell 3:963–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Peña-Cortés H, Fisahn J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci 92:4106–4113

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickard BG (1973) Action potentials in higher plants. Bot Rev 39:172–201

    Article  Google Scholar 

  • Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19:374–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci U S A 106:17431–17436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racusen RH, Galston TJ (1980) Phytochrome modifies blue-light-induced electrical changes in corn coleoptiles. Plant Physiol 70:331–333

    Article  Google Scholar 

  • Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57

    Article  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Medina C, Atkins CA, Mann AJ, Jordan ME, Smith PMC (2011) Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.). BMC Plant Biol 11:1–19

    Article  CAS  Google Scholar 

  • Roshchina VV (2001) Neurotransmitters in plant life. Science Publishers, Enfield

    Book  Google Scholar 

  • Salvador-Recatalà V, Tjallingii WF, Farmer EE (2014) Realtime, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytol 203:674–684

    Article  PubMed  CAS  Google Scholar 

  • Sanan N, Mallick BN, Sopory SK (2000) Electrical signal from root to shoot in Sorghum bicolor: induction of leaf opening and evidence for fast extracellular propagation. Plant Sci 160:237–245

    Google Scholar 

  • Sandlin R, Lerman L, Barry W, Tasaki I (1968) Application of laser interferometry to physiological studies of excitable tissues. Nature 217:575–576

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Chino M, Hayashi H, Fujiwara T (1998) Detection of several mRNA species in rice phloem sap. Plant Cell Physiol 39:895–897

    Article  CAS  PubMed  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shephard VA, Goodwin PB (1992) Seasonal patterns of cell-to-cell communication in Chara corallina. Klein ex Willd. I. Cell-to-cell communication in vegetative lateral branches during winter and spring. Plant Cell Environ 15:137–150

    Article  Google Scholar 

  • Shepherd VA, Beilby MJ, Heslop D (1999) Ecophysiology of the hypotonic response in the salt-tolerant alga Lamprothamnium papulosum. Plant Cell Environ 22:333–346

    Article  Google Scholar 

  • Shepherd VA, Shimrnen T, Beilby MJ (2001) Mechanosensory ion channels in Chara: the influence of cell turgor pressure on touch-activated receptor potentials and action potentials. Aust J Plant Physiol 28:551–566

    CAS  Google Scholar 

  • Shiina T, Tazawa M (1986) Action potentials in Luffa cylindrica and its effects on elongation growth. Plant Cell Physiol 27:33–39

    Google Scholar 

  • Sibaoka T (1962) Excitable cells in Mimosa. Science 137:226

    Article  CAS  PubMed  Google Scholar 

  • Sibaoka T (1969) Physiology of raid movements in higher plants. Annu Rev Plant Physiol 20:165–184

    Article  CAS  Google Scholar 

  • Sibaoka T (1979) Action potentials and rapid plant movements. In: Skoog F (ed) Plant growth substances 1979. Springer, Berlin, pp 462–469

    Google Scholar 

  • Simons P (1992) The action plant. Blackwell, Oxford

    Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    Article  CAS  PubMed  Google Scholar 

  • Skopelitis DS, Hill K, Klesen S, Marco CF, von Born P, Chitwood DH, Timmermans MCP (2018) Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. Nat Commun 9:3107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Somssich M, Je BI, Simon R, Jackson D (2016) CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:3238–3248

    Article  CAS  PubMed  Google Scholar 

  • Spalding EP (1995) An apparatus for studying rapid electrophysiological responses to light demonstrated on Arabidopsis leaves. Photochem Photobiol 62:934–939

    Article  CAS  PubMed  Google Scholar 

  • Spalding EP, Cosgrove DJ (1989) Large plasma-membrane depolarization precedes rapid blue-light induced growth inhibition in cucumber. Planta 178:407–410

    Article  PubMed  Google Scholar 

  • Spalding EP, Cosgrove DJ (1992) Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls. Planta 188:199–205

    Article  CAS  PubMed  Google Scholar 

  • Spiegelman Z, Golan G, Wolf S (2013) Don’t kill the messenger: long-distance trafficking of mRNA molecules. Plant Sci 213:1–8

    Article  CAS  PubMed  Google Scholar 

  • Staal M, Elzenga TM, van Elk AG, Prins HBA, Van-Volkenburgh E (1994) Red and blue-stimulated proton efflux by epidermal leaf cells of the argenteum mutant of Pisum sativum. J Exp Bot 54:1213–1218

    Article  Google Scholar 

  • Stahlberg R, Cleland RE, Van Volkenburgh E (2005) Decrement and amplification of slow wave potentials during their propagation in Helianthus annuus L. shoots. Planta 220:550–558

    Article  CAS  PubMed  Google Scholar 

  • Stahlberg R, Cleland R, Van Volkenburgh E (2006) Slow wave potentials-a propagating electrical signal unique to higher plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 291–308

    Chapter  Google Scholar 

  • Stankovic B, Davies E (1998) Communication within plant cells. In: Sahi VP, Baluška F (eds) Concepts in cell biology – history and evolution, Plant cell monographs, vol 23. Springer, Berlin

    Google Scholar 

  • Stankovic B, Zawadzki T, Davies E (1997) Characterization of the variation potential in sunflower. Plant Physiol 115:1083–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelmach BA, Müller A, Hennig P, Laudert D, Andert L, Weiler EW (1998) Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signalling compound in plant mechanotransduction. Phytochemistry 47:539–546

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plants defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci U S A 98:12837–12842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian S (2019) Little RNAs go a long way: long-distance signaling by microRNAs. Mol Plant 12:18–20

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF, Shuman JL, Luo X, Shah J, Schlauch K, Shulaev V, Mittler R (2013) Temporal–spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25:3553–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup R, Bennett M (2003) Auxin transport: the fountain of life in plants? Dev Cell 5:824–826

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Goto K (2003) Terminal flower2, an Arabidopsis homolog of heterochromatin protein1, counteracts the activation of flowering locus T by constans in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thain JF (1995) Electrophysiology. In: Gallbraith DW, Bohnert HJ, Bourque DP (eds) Methods in cell biology, vol 49. Academic, San Diego, pp 259–274

    Google Scholar 

  • Thain JF, Wildon DC (1996) Electrical signalling in plants. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. BIOS Scientific Publisher, Oxford, pp 301–317

    Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Trewavas A (2003) Aspects of plant intelligence. Ann Bot (Lond) 92:1–20

    Article  CAS  Google Scholar 

  • Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE, Madsen LH, Bhasin H, Sexauer M, Stougaard J, Markmann K (2018) Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362:233–236

    Article  CAS  PubMed  Google Scholar 

  • Tudela D, Primo-Millo E (1992) 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra Mandarin (Citrus reshni Hort. ex Tan.) seedlings rehydrated after water stress. Plant Physiol 100:131–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221

    Article  CAS  PubMed  Google Scholar 

  • Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, Singh RK, Immanen J, Mähler N, Hvidsten TR, Eklund DM, Bowman JL, Helariutta Y, Bhalerao RP (2018) Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360:212

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • van Bel AJE, Furch ACU, Hafke JB, Knoblauch M, Patrick JW (2011) (Questions)n on phloem biology: 2. Mass flow, molecular hopping, distribution patterns and macromolecular signalling. Plant Sci 181:325–330

    Article  PubMed  CAS  Google Scholar 

  • Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM (2010) Characterisation of microRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap. BMC Plant Biol 10:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wayne R (1993) The excitability of plant cells. Am Sci 81:140–151

    Google Scholar 

  • Wayne R (1994) The excitability of plant cells: with a special emphasis on characean internodal cells. Bot Rev 60:265–267

    Article  CAS  PubMed  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Williams SE, Pickard BG (1972) Receptor potentials and action potentials in Drosera tentacles. Planta 103:193–221

    Article  CAS  PubMed  Google Scholar 

  • Williams SE, Pickard BG (1980) The role of action potentials in the control of capture movements of Drosera and Dionaea. In: Skoog F (ed) Plant growth substances. Springer, Berlin, pp 470–480

    Google Scholar 

  • Williams SE, Spanswick RM (1976) Propagation of the neuroid action potential of the carnivorous plant Drosera. J Comp Physiol 108:211–223

    Article  Google Scholar 

  • Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB (2002) Amino acid/neurotransmitter transporters are highly conserved between fungi, plants and animals. Trends Biochem Sci 27:139–147

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Li J, Gangappa SN, Hettiarachchi C, Lin F, Andersson MX, Jiang Y, Deng XW, Holm M (2014) Convergence of light and ABA signaling on the ABI5 promoter. PLoS Genet 10:e1004197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoo BC, Kragler F, Varkonyi-Gasic E et al (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawadzki T (1980) Action potentials in Lupinus augustifolius L. shoots. V. Spread of excitation in the stem, leaves and root. J Exp Bot 31:1371–1377

    Article  Google Scholar 

  • Zawadzki T, Davies E, Dziubinska H, Trebacz K (1991) Characteristics of action potentials in Helianthus annuus. Physiol Plant 83:601–604

    Article  Google Scholar 

  • Zeevaart AJ (1976) Some effects of fumigating plants for short periods with NO2. Environ Pollut 11:97–108

    Article  CAS  Google Scholar 

  • Zimmermann U, Beckers F (1978) Generation of action potentials in Chara corallina by turgor pressure changes. Planta 138:173–179

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MR, Mithöfer A (2013) Electrical long-distance signaling in plants. In: Baluška F (ed) Long-distance systemic signaling and communication in plants. Springer, Berlin, pp 291–308

    Chapter  Google Scholar 

  • Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:1593–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann MR, Mithöfer A, Will T, Felle HH, Furch AC (2016) Herbivore triggered electrophysiological reactions: candidates for systemic signals in higher plants and the challenge of their identification. Plant Physiol 170:2407–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

There is a vast literature in the field, so we offer our apologies to researchers whose work could not be cited here. The authors performed their experiments on electrical conductance in the laboratory of Prof. B.N. Mallick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeti Sanan-Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanan-Mishra, N. (2019). Electric Signaling and Long-Distance Communication in Plants. In: Sopory, S. (eds) Sensory Biology of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-8922-1_19

Download citation

Publish with us

Policies and ethics